Oxidative cross-dehydrogenative coupling of amines and α-carbonyl aldehydes over heterogeneous Cu-MOF-74 catalyst: A ligand- and base-free approach

[1]  T. Truong,et al.  C1-alkynylation of tetrahydroisoquinoline by A3 reaction using metal-organic framework Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst , 2015 .

[2]  Y. Vu,et al.  Quinoxaline synthesis via oxidative cyclization reaction using metal–organic framework Cu(BDC) as an efficient heterogeneous catalyst , 2015 .

[3]  M. Sánchez-Sánchez,et al.  Nanocrystalline M–MOF‐74 as Heterogeneous Catalysts in the Oxidation of Cyclohexene: Correlation of the Activity and Redox Potential , 2015 .

[4]  T. Truong,et al.  Efficient and recyclable Cu2(BDC)2(BPY)-catalyzed oxidative amidation of terminal alkynes: role of bipyridine ligand , 2015 .

[5]  N. Phan,et al.  Propargylamine synthesis via direct oxidative CC coupling reaction between N,N-dimethylanilines and terminal alkynes under metal–organic framework catalysis , 2014 .

[6]  Quan Hung Tran,et al.  Removable bidentate directing group assisted-recyclable metal–organic frameworks-catalyzed direct oxidative amination of Sp2 C–H bonds , 2014 .

[7]  Kunio Awaga,et al.  Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. , 2014, Journal of the American Chemical Society.

[8]  N. Phan,et al.  Propargylamine synthesis via sequential methylation and C–H functionalization of N-methylanilines and terminal alkynes under metal–organic framework Cu2(BDC)2(DABCO) catalysis , 2014 .

[9]  Nanette N. Jarenwattananon,et al.  Effects of multivariate linker substitution, metal binding, and reactor conditions on the catalytic activity of a Pd-functionalized MOF for olefin hydrogenation , 2014 .

[10]  T. Truong,et al.  Direct arylation of heterocycles through C–H bond cleavage using metal–organic-framework Cu2(OBA)2(BPY) as an efficient heterogeneous catalyst , 2014 .

[11]  G. Zhu,et al.  Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene , 2014 .

[12]  S. Koner,et al.  Aromatic N‐Arylations Catalyzed by Copper‐Anchored Porous Zinc‐Based Metal–Organic Framework under Heterogeneous Conditions , 2014 .

[13]  V. V. Speybroeck,et al.  Metal-dioxidoterephthalate MOFs of the MOF-74 type: Microporous basic catalysts with well-defined active sites , 2014 .

[14]  B. A. Shah,et al.  A general metal free approach to α-ketoamides via oxidative amidation-diketonization of terminal alkynes. , 2014, Chemical communications.

[15]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[16]  G. Tendeloo,et al.  A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations , 2014 .

[17]  Young-Min Chung,et al.  A new site-isolated acid–base bifunctional metal–organic framework for one-pot tandem reaction , 2014 .

[18]  Xuedan Song,et al.  Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst , 2014 .

[19]  R. Sanz,et al.  Copper-based MOF-74 material as effective acid catalyst in Friedel–Crafts acylation of anisole , 2014 .

[20]  A. Corma,et al.  Cu-MOFs as active, selective and reusable catalysts for oxidative C–O bond coupling reactions by direct C–H activation of formamides, aldehydes and ethers , 2014 .

[21]  Farnaz Zadehahmadi,et al.  Manganese(III) tetrapyridylporphyrin-chloromethylated MIL-101 hybrid material: A highly active catalyst for oxidation of hydrocarbons , 2014 .

[22]  Nannan Zheng,et al.  Merging metal–organic framework catalysis with organocatalysis: A thiourea functionalized heterogeneous catalyst at the nanoscale , 2014 .

[23]  A. Bhaumik,et al.  Pd-grafted porous metal–organic framework material as an efficient and reusable heterogeneous catalyst for C–C coupling reactions in water , 2014 .

[24]  Jihye Park,et al.  Metal–Organic Frameworks as Biomimetic Catalysts , 2014 .

[25]  M. Tu,et al.  Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification. , 2013, Dalton transactions.

[26]  N. Phan,et al.  Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst , 2013 .

[27]  A. Matzger,et al.  Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. , 2013, Journal of the American Chemical Society.

[28]  Shuangquan Zang,et al.  Syntheses, structures, tunable emission and white light emitting Eu3+ and Tb3+ doped lanthanide metal-organic framework materials. , 2013, Dalton transactions.

[29]  N. Phan,et al.  Copper‐Catalyzed Synthesis of α‐Aryl Ketones by Metal–Organic Framework MOF‐199 as an Efficient Heterogeneous Catalyst , 2013 .

[30]  D. Vos,et al.  Metal–organic frameworks as catalysts: the role of metal active sites , 2013 .

[31]  J. Čejka,et al.  Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites , 2013 .

[32]  A. M. Chibiryaev,et al.  Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101 , 2013 .

[33]  Gisela Orcajo,et al.  Synthesis of a honeycomb-like Cu-based metal-organic framework and its carbon dioxide adsorption behaviour. , 2013, Dalton transactions.

[34]  K. Müllen,et al.  A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy , 2012, Scientific Reports.

[35]  Pengyan Wu,et al.  Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes. , 2012, Journal of the American Chemical Society.

[36]  C. Hulme,et al.  Selenium dioxide-mediated synthesis of α-ketoamides from arylglyoxals and secondary amines. , 2012, Tetrahedron letters.

[37]  Y. Chabal,et al.  Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration , 2012, 1209.2564.

[38]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[39]  L. Zhang,et al.  Copper-catalyzed aerobic oxidative cross-dehydrogenative coupling of amine and α-carbonyl aldehyde: a practical and efficient approach to α-ketoamides with wide substrate scope. , 2012, Organic letters.

[40]  N. Phan,et al.  Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction , 2012 .

[41]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[42]  Céline Chizallet,et al.  Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations. , 2012, Journal of the American Chemical Society.

[43]  J. Čejka,et al.  Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal-organic-framework. , 2012, Dalton transactions.

[44]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[45]  Feng-Tian Du,et al.  Copper-catalyzed direct oxidative synthesis of α-ketoamides from aryl methyl ketones, amines, and molecular oxygen , 2012 .

[46]  L. Zhang,et al.  Copper-catalyzed aerobic oxidative coupling of aryl acetaldehydes with anilines leading to α-ketoamides. , 2011, Angewandte Chemie.

[47]  J. M. Zamaro,et al.  Combination of MOFs and zeolites for mixed-matrix membranes. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  D. D. De Vos,et al.  Liquid phase separation of polyaromatics on [Cu2(BDC)2(dabco)]. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[49]  Hong-Cai Zhou,et al.  Isomerism in Metal–Organic Frameworks: “Framework Isomers” , 2011 .

[50]  H. García,et al.  Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol , 2010 .

[51]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts , 2010 .

[52]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[53]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[54]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[55]  H. García,et al.  Claisen–Schmidt Condensation Catalyzed by Metal‐Organic Frameworks , 2010 .

[56]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[57]  Ning Jiao,et al.  Dioxygen activation under ambient conditions: Cu-catalyzed oxidative amidation-diketonization of terminal alkynes leading to alpha-ketoamides. , 2010, Journal of the American Chemical Society.

[58]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[59]  C. Pinel,et al.  Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks , 2009 .

[60]  H. García,et al.  Metal-Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine , 2009 .

[61]  Wei Sun,et al.  A general and efficient copper catalyst for the double carbonylation reaction. , 2009, Organic letters.

[62]  L. Qiu,et al.  Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method , 2009 .

[63]  M. O'keeffe,et al.  Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. , 2008, Journal of the American Chemical Society.

[64]  Michael O'Keeffe,et al.  Reticular chemistry of metal-organic polyhedra. , 2008, Angewandte Chemie.

[65]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[66]  Mark Nieuwenhuyzen,et al.  A pillared-grid MOF with large pores based on the Cu2(O2CR)4 paddle-wheel , 2007 .

[67]  Klavs F Jensen,et al.  Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. , 2007, Angewandte Chemie.

[68]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[69]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[70]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[71]  Masato Tanaka,et al.  Reactions of a Carbamoylstannane with Acid Chlorides: Highly Efficient Synthesis of α-Oxo Amides , 2004 .

[72]  M. Meldal,et al.  alpha-Ketocarbonyl peptides: a general approach to reactive resin-bound intermediates in the synthesis of peptide isosteres for protease inhibitor screening on solid support. , 2001, Journal of the American Chemical Society.

[73]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[74]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[75]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines , 2012 .

[76]  I. Ojima,et al.  Synthesis of chiral oligopeptides by means of catalytic asymmetric hydrogenation of dehydropeptides , 1984 .

[77]  Gisela Orcajo,et al.  Journal and Proceedings of the Royal Institute of Chemistry of Great Britain and Ireland. Part 5. 1947 , 1947 .