No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be inmore » excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

C. B. D'Andrea | A. Roodman | D. W. Gerdes | D. J. James | M. Soares-Santos | S. Jouvel | H. T. Diehl | D. L. DePoy | K. Honscheid | D. Brooks | G. Tarle | E. Bertin | R. A. Gruendl | I. Sevilla-Noarbe | R. C. Nichol | M. Banerji | A. Benoit-L'evy | A. Carnero Rosell | L. N. da Costa | S. Desai | P. Doel | T. F. Eifler | J. Frieman | D. Gruen | K. Kuehn | N. Kuropatkin | O. Lahav | M. A. G. Maia | M. March | J. L. Marshall | B. Nord | R. Ogando | E. Sanchez | V. Scarpine | F. Sobreira | E. Suchyta | M. E. C. Swanson | J. Estrada | B. Flaugher | R. H. Wechsler | B. Leistedt | F. B. Abdalla | A. E. Evrard | J. P. Dietrich | P. Melchior | P. Fosalba | R. Miquel | M. Jarvis | N. MacCrann | M. Carrasco Kind | J. Carretero | A. R. Walker | E. Neilsen | S. Allam | M. Crocce | V. Vikram | Y. Zhang | E. M. Huff | D. Thomas | R. Nichol | D. Gerdes | J. Frieman | O. Lahav | W. Percival | P. Fosalba | F. Abdalla | A. Rosell | L. Costa | K. Honscheid | M. Maia | R. Ogando | A. Ross | E. Rykoff | F. Sobreira | M. Swanson | M. Banerji | S. Jouvel | Peter Melchior | M. Kind | R. Gruendl | H. Peiris | M. Sako | S. Allam | H. Diehl | I. Sevilla-Noarbe | R. Wechsler | E. Bertin | D. Brooks | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | S. Desai | P. Doel | T. Eifler | A. Evrard | B. Flaugher | E. Gaztañaga | D. Gruen | D. James | K. Kuehn | N. Kuropatkin | M. Lima | R. Miquel | E. Neilsen | V. Scarpine | E. Suchyta | G. Tarlé | A. Walker | E. Sheldon | M. Soares-Santos | A. Benoit-Lévy | M. March | E. Sánchez | J. Dietrich | J. Estrada | B. Nord | J. Thaler | D. Thomas | V. Vikram | Y. Zhang | D. Depoy | K. Reil | E. Huff | N. MacCrann | M. Jarvis | B. Leistedt | T. Abbott | D. L. Burke | C. E. Cunha | E. Gaztanaga | M. Lima | K. Reil | A. J. Ross | E. S. Rykoff | H. V. Peiris | W. J. Percival | E. Sheldon | T. Abbott | C. J. Miller | M. Sako | R. C. Smith | J. Thaler | J. Aleksi'c | J. Aleksi'c | M. C. Kind | A. C. Rosell | A. Roodman | J. Marshall | C. Miller | R. Smith | M. Swanson | R. C. Smith | Risa Wechsler

[1]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[2]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[3]  A. Ealet,et al.  Designing future dark energy space missions. I. Building realistic galaxy spectro-photometric catalo , 2009, 0902.0625.

[4]  Mark R. Calabretta,et al.  Representations of world coordinates in FITS , 2002, astro-ph/0207407.

[5]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[6]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[7]  G. Bernstein,et al.  The skewness of the aperture mass statistic , 2003 .

[8]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[9]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[10]  D. Barrado,et al.  Dynamical analysis of nearby clusters - Automated astrometry from the ground: precision proper motions over a wide field , 2013, 1306.4446.

[11]  V. Narayanan,et al.  Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.

[12]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[13]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[14]  R. J. Brunner,et al.  Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data , 2015, 1507.05360.

[15]  D. Fox,et al.  A White Paper Submitted to the Astro2010 Decadal Survey of Astronomy and Astrophysics , 2010 .

[16]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .

[17]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples , 2008 .

[18]  R. Nichol,et al.  MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA , 2015, 1507.05647.

[19]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[20]  The APM Galaxy Survey — III. An analysis of systematic errors in the angular correlation function and cosmological implications , 1996, astro-ph/9601103.

[21]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[22]  D. Thompson,et al.  The Angular Correlations of Galaxies in the COSMOS Field , 2007, 0704.2545.

[23]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[24]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[25]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[26]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[27]  Adam Amara,et al.  An Ultra Fast Image Generator (UFig) for wide-field astronomy , 2012, Astron. Comput..

[28]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[29]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[30]  M. Swanson,et al.  Methods for rapidly processing angular masks of next-generation galaxy surveys , 2007, 0711.4352.

[31]  Alexander G. Gray,et al.  First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.

[32]  Caltech,et al.  Weighing the Giants – II. Improved calibration of photometry from stellar colours and accurate photometric redshifts , 2012, 1208.0602.

[33]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[34]  E. Bertin,et al.  MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY , 2014, 1411.0032.

[35]  Robert C. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[36]  C. B. D'Andrea,et al.  Wide-Field Lensing Mass Maps from DES Science Verification Data: Methodology and Detailed Analysis , 2015, 1504.03002.

[37]  C. Stubbs,et al.  STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS , 2009, 0903.5302.

[38]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[39]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[40]  B. Schlesinger,et al.  Definition of the Flexible Image Transport System (FITS) , 2001 .

[41]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[42]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[43]  B. Yanny,et al.  Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey , 2013, 1306.5236.

[44]  Rodger I. Thompson,et al.  Exploring the NRO Opportunity for a Hubble-Sized Wide-Field Near-IR Space Telescope - New WFIRST , 2012, 1210.7809.

[45]  W. Percival,et al.  The effect of redshift-space distortions on projected two-point clustering measurements , 2010, 1003.0896.

[46]  M. Crocce,et al.  Clustering of photometric luminous red galaxies – I. Growth of structure and baryon acoustic feature , 2011, 1104.5236.

[47]  W. Percival,et al.  Measuring redshift-space distortions using photometric surveys , 2011, 1102.0968.

[48]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[49]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[50]  R. Nichol,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. , 2015, Physical review letters.

[51]  Matthew Colless,et al.  The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum , 2010, 1003.5721.

[52]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[53]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[54]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .