Qualitative Spatial and Temporal Reasoning: Current Status and Future Challenges

Qualitative Spatial & Temporal Reasoning (QSTR) is a major field of study in Symbolic AI that deals with the representation and reasoning of spatiotemporal information in an abstract, human-like manner. We survey the current status of QSTR from a viewpoint of reasoning approaches, and identify certain future challenges that we think that, once overcome, will allow the field to meet the demands of and adapt to real-world, dynamic, and time-critical applications of highly active areas such as machine learning and data mining.

[1]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[2]  Jean-François Condotta,et al.  A SAT Approach for Maximizing Satisfiability in Qualitative Spatial and Temporal Constraint Networks , 2016, KR.

[3]  Lidia Arroyo Prieto Acm , 2020, Encyclopedia of Cryptography and Security.

[4]  Joachim Hertzberg,et al.  Online task merging with a hierarchical hybrid task planner for mobile service robots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  Zhi-Hua Zhou,et al.  Abductive learning: towards bridging machine learning and logical reasoning , 2019, Science China Information Sciences.

[6]  Jinbo Huang,et al.  Decomposition and tractability in qualitative spatial and temporal reasoning , 2013, Artif. Intell..

[7]  Jean-Marie Lagniez,et al.  An Incremental SAT-Based Approach to Reason Efficiently on Qualitative Constraint Networks , 2018, CP.

[8]  Anthony G. Cohn,et al.  Learning Relational Event Models from Video , 2015, J. Artif. Intell. Res..

[9]  Mario Alviano,et al.  A Generalised Approach for Encoding and Reasoning with Qualitative Theories in Answer Set Programming , 2020, Theory and Practice of Logic Programming.

[10]  Mehul Bhatt,et al.  Out of Sight But Not Out of Mind: An Answer Set Programming Based Online Abduction Framework for Visual Sensemaking in Autonomous Driving , 2019, IJCAI.

[11]  Jack Dale Log , 2020, Definitions.

[12]  Nick Hawes,et al.  Task scheduling for mobile robots using interval algebra , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Michael Sioutis,et al.  Dynamic Branching in Qualitative Constraint Networks via Counting Local Models , 2020, TIME.

[14]  Yuval Shahar,et al.  Exploration of patterns predicting renal damage in patients with diabetes type II using a visual temporal analysis laboratory , 2015, J. Am. Medical Informatics Assoc..

[15]  Anthony G. Cohn,et al.  From Video to RCC8: Exploiting a Distance Based Semantics to Stabilise the Interpretation of Mereotopological Relations , 2011, COSIT.

[16]  Jean-François Condotta,et al.  A Practical Approach for Maximizing Satisfiability in Qualitative Spatial and Temporal Constraint Networks , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).

[17]  Panagiotis Papapetrou,et al.  Identifying Factors for the Effectiveness of Treatment of Heart Failure: A Registry Study , 2016, 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS).

[18]  Andreas D. Lattner,et al.  Knowledge-based risk assessment for intelligent vehicles , 2005, International Conference on Integration of Knowledge Intensive Multi-Agent Systems, 2005..

[19]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Barry O'Sullivan,et al.  Proteus: A Hierarchical Portfolio of Solvers and Transformations , 2013, CPAIOR.

[22]  Sanjiang Li,et al.  On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi , 2015, COSIT.

[23]  Kenneth D. Forbus,et al.  Qualitative Spatial Reasoning: The Clock Project , 1991, Artif. Intell..

[24]  Bart Selman,et al.  Backdoors To Typical Case Complexity , 2003, IJCAI.

[25]  Pascal Denis,et al.  Predicting Globally-Coherent Temporal Structures from Texts via Endpoint Inference and Graph Decomposition , 2011, IJCAI.

[26]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[27]  S. Wölfl,et al.  GQR – A Fast Reasoner for Binary Qualitative Constraint Calculi , 2008 .

[28]  Aristides Gionis,et al.  Discovering recurring activity in temporal networks , 2017, Data Mining and Knowledge Discovery.

[29]  Sheng-sheng Wang,et al.  Qualitative constraint satisfaction problems: An extended framework with landmarks , 2013, Artif. Intell..

[30]  Mehul Bhatt,et al.  Spatio-terminological Inference for the Design of Ambient Environments , 2009, COSIT.

[31]  Jean-François Condotta,et al.  Efficiently Characterizing Non-Redundant Constraints in Large Real World Qualitative Spatial Networks , 2015, IJCAI.

[32]  Steven Schockaert,et al.  Reasoning about Betweenness and RCC8 Constraints in Qualitative Conceptual Spaces , 2018, IJCAI.

[33]  Lakhdar Sais,et al.  ManySAT: a Parallel SAT Solver , 2009, J. Satisf. Boolean Model. Comput..

[34]  Amy Loutfi,et al.  Semantic Referee: A Neural-Symbolic Framework for Enhancing Geospatial Semantic Segmentation , 2019, Semantic Web.

[35]  Carl P. L. Schultz,et al.  Non-Monotonic Spatial Reasoning with Answer Set Programming Modulo Theories , 2017, Theory Pract. Log. Program..

[36]  Sanjiang Li,et al.  On redundant topological constraints , 2014, Artif. Intell..

[37]  Bernhard Nebel,et al.  Efficient Methods for Qualitative Spatial Reasoning , 2001, J. Artif. Intell. Res..

[38]  Tomi Janhunen,et al.  Allen's Interval Algebra Makes the Difference , 2019, DECLARE.

[39]  Fredrik Heintz,et al.  Spatio-Temporal Stream Reasoning with Incomplete Spatial Information , 2014, ECAI.

[40]  Tools , 2019, Oncology Issues.

[41]  Jean-François Condotta,et al.  An Efficient Approach for Tackling Large Real World Qualitative Spatial Networks , 2016, Int. J. Artif. Intell. Tools.

[42]  Fabio Gagliardi Cozman,et al.  Reasoning about shadows in a mobile robot environment , 2013, Applied Intelligence.

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Marius Thomas Lindauer,et al.  claspfolio 2: Advances in Algorithm Selection for Answer Set Programming , 2014, Theory and Practice of Logic Programming.

[45]  Jean-François Condotta,et al.  Efficient Approach to Solve the Minimal Labeling Problem of Temporal and Spatial Qualitative Constraints , 2013, IJCAI.

[46]  Sanjiang Li,et al.  Efficient Path Consistency Algorithm for Large Qualitative Constraint Networks , 2016, IJCAI.

[47]  James F. Allen Planning as Temporal Reasoning , 1991, KR.

[48]  Panagiotis Papapetrou,et al.  ABIDE: Querying Time-Evolving Sequences of Temporal Intervals , 2017, IDA.

[49]  D. Wolter Qualitative Spatial Reasoning for Applications : New Challenges and the SparQ Toolbox , 2010 .

[50]  Georg Gottlob,et al.  On minimal constraint networks , 2011, Artif. Intell..

[51]  Tomi Janhunen,et al.  Towards Leveraging Backdoors in Qualitative Constraint Networks , 2019, KI.

[52]  Arne Kreutzmann,et al.  Qualitative Spatial and Temporal Reasoning with AND/OR Linear Programming , 2014, ECAI.

[53]  Sebastijan Dumancic,et al.  From Statistical Relational to Neuro-Symbolic Artificial Intelligence , 2020, IJCAI.

[54]  Shazia Wasim Sadiq,et al.  Using a temporal constraint network for business process execution , 2006, ADC.

[55]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[56]  Jae Hee Lee,et al.  A Survey of Qualitative Spatial and Temporal Calculi , 2016, ACM Comput. Surv..

[57]  Tomi Janhunen,et al.  On Robustness in Qualitative Constraint Networks , 2020, IJCAI.

[58]  Brenda J Butka Imaging , 2003, JAMA.

[59]  Frank Dylla,et al.  Qualitative Spatial Reasoning with Conceptual Neighborhoods for Agent Control , 2007, J. Intell. Robotic Syst..

[60]  Peter Sanders,et al.  HordeSat: A Massively Parallel Portfolio SAT Solver , 2015, SAT.

[61]  Zina M. Ibrahim,et al.  Modeling Rare Interactions in Time Series Data Through Qualitative Change: Application to Outcome Prediction in Intensive Care Units , 2020, ECAI.

[62]  Sanjiang Li,et al.  Leveraging Variable Elimination for Efficiently Reasoning about Qualitative Constraints , 2018, Int. J. Artif. Intell. Tools.