A four‐node solid shell element formulation with assumed strain

[1]  S. Lee,et al.  An eighteen‐node solid element for thin shell analysis , 1988 .

[2]  Norman F. Knight,et al.  Improved assumed‐stress hybrid shell element with drilling degrees of freedom for linear stress, buckling and free vibration analyses , 1995 .

[3]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[4]  Chahngmin Cho,et al.  An efficient assumed strain element model with six DOF per node for geometrically non‐linear shells , 1995 .

[5]  Jr. N. Knight The Raasch challenge for shell elements , 1996 .

[6]  Peter M. Pinsky,et al.  A mixed finite element formulation for Reissner–Mindlin plates based on the use of bubble functions , 1989 .

[7]  Ferdinando Auricchio,et al.  A triangular thick plate finite element with an exact thin limit , 1995 .

[8]  L. Morley Skew plates and structures , 1963 .

[9]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[10]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[11]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[12]  D. Talaslidis,et al.  A Simple and Efficient Approximation of Shells via Finite Quadrilateral Elements , 1982 .

[13]  O. C. Zienkiewicz,et al.  A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .

[14]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[15]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[16]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[17]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[18]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[19]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[20]  M. Crisfield A four-noded thin-plate bending element using shear constraints—a modified version of lyons' element , 1983 .

[21]  H. C. Park,et al.  A local coordinate system for assumed strain shell element formulation , 1995 .

[22]  Atef F. Saleeb,et al.  A quadrilateral shell element using a mixed formulation , 1987 .