Adaptation changes the direction tuning of macaque MT neurons

[1]  J. Movshon,et al.  Neuronal Adaptation to Visual Motion in Area MT of the Macaque , 2003, Neuron.

[2]  N. Qian,et al.  Learning and adaptation in a recurrent model of V1 orientation selectivity. , 2003, Journal of neurophysiology.

[3]  Yang Dan,et al.  Dynamic Modification of Cortical Orientation Tuning Mediated by Recurrent Connections , 2002, Neuron.

[4]  K. H. Britten,et al.  Motion adaptation in area MT. , 2002, Journal of neurophysiology.

[5]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[6]  E. Miller,et al.  Dynamics of neuronal sensitivity in visual cortex and local feature discrimination , 2002, Nature Neuroscience.

[7]  Y. Dan,et al.  Temporal Specificity in the Cortical Plasticity of Visual Space Representation , 2002, Science.

[8]  M. Sur,et al.  Cortical Plasticity: Time For A Change , 2002, Current Biology.

[9]  C. Clifford Perceptual adaptation: motion parallels orientation , 2002, Trends in Cognitive Sciences.

[10]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[11]  M. Sur,et al.  Foci of orientation plasticity in visual cortex , 2001, Nature.

[12]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[13]  Alexander Thiele,et al.  Neural Correlates of Contrast Detection at Threshold , 2000, Neuron.

[14]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[15]  Maria V. Sanchez-Vives,et al.  Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro , 2000, The Journal of Neuroscience.

[16]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[17]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[18]  Eero P. Simoncelli,et al.  Local velocity representation: evidence from motion adaptation , 1998, Vision Research.

[19]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[20]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[21]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[22]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[23]  Robert Patterson,et al.  Direction-selective adaptation and simultaneous contrast induced by stereoscopic (cyclopean) motion , 1996, Vision Research.

[24]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Thomas D. Albright,et al.  Neural correlates of perceptual motion coherence , 1992, Nature.

[28]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  T. Albright,et al.  Motion coherency rules are form-cue invariant , 1992, Vision Research.

[30]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[32]  R. Blake,et al.  The neural site of binocular rivalry relative to the analysis of motion in the human visual system , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  A. Chaudhuri Modulation of the motion aftereffect by selective attention , 1990, Nature.

[34]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[35]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain , 1989, Visual Neuroscience.

[36]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[37]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[38]  S. Petersen,et al.  Direction-specific adaptation in area MT of the owl monkey , 1985, Brain Research.

[39]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[40]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[41]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[43]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[44]  R. Sekuler,et al.  Adaptation alters perceived direction of motion , 1976, Vision Research.

[45]  R. Fox,et al.  Effect of binocular rivalry suppression on the motion aftereffect , 1975, Vision Research.

[46]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[47]  C. Blakemore,et al.  The perceived spatial frequency shift: evidence for frequency‐selective neurones in the human brain , 1970, The Journal of physiology.

[48]  H. Eysenck,et al.  Figural After-Effects , 1959, Nature.

[49]  J. Gibson,et al.  Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies , 1937 .

[50]  J. Gibson,et al.  Adaptation, after-effect and contrast in the perception of curved lines. , 1933 .

[51]  J. Gibson,et al.  ADAPTATION , AFTEREFFECT AND CONTRAST IN THE PERCEPTION OF TILTED LINES , 2004 .

[52]  Eero P. Simoncelli,et al.  Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons , 2002 .

[53]  P. McEwen Figural after-effects , 1958 .

[54]  E. Adelson,et al.  THE ANALYSIS OF MOVING VISUAL PATTERNS , 1997 .