Geometrical significance of the Löwner-Heinz inequality

It is proven that the Lowner-Heinz inequality ‖AtBt‖ ≤ ‖AB‖t, valid for all positive invertible operators A,B on the Hilbert space H and t ∈ [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C∗algebra. In particular, the Lowner-Heinz inequality is equivalent to some type of “nonpositive curvature” property of that space.

[1]  M. Fujii,et al.  Norm inequalities in the Corach-Porta-Recht theory and operator means , 1996 .

[2]  Carlangelo Liverani,et al.  GENERALIZATION OF THE HILBERT METRIC TO THE SPACE OF POSITIVE DEFINITE MATRICES , 1994 .

[3]  Horacio Porta,et al.  Convexity of the geodesic distance on spaces of positive operators , 1994 .

[4]  Roger D. Nussbaum,et al.  Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations , 1994, Differential and Integral Equations.

[5]  G. Corach,et al.  The geometry of the space of selfadjoint invertible elements in a C*-algebra , 1993 .

[6]  Horacio Porta,et al.  GEODESICS AND OPERATOR MEANS IN THE SPACE OF POSITIVE OPERATORS , 1993 .

[7]  R. Nussbaum Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .

[8]  Irving Segal,et al.  NOTES TOWARDS THE CONSTRUCTION OF NONLINEAR RELATIVISTIC QUANTUM FIELDS. II. THE BASIC NONLINEAR FUNCTIONS IN GENERAL SPACE--TIMES. , 1969 .

[9]  A. C. Thompson ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE , 1963 .

[10]  Erhard Heinz,et al.  Beiträge zur Störungstheorie der Spektralzerleung , 1951 .

[11]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[12]  G. Corach Operator inequalities, geodesics and interpolation , 1994 .

[13]  G. Corach,et al.  A geometric interpretation of Segal’s inequality $\Vert e\sp {X+Y}\Vert \leq\Vert e\sp {X/2}e\sp Ye\sp {X/2}\Vert $ , 1992 .

[14]  G. Corach,et al.  A geometric interpretation of Segal’s inequality \Vert^{+}\Vert≤\Vert^{/2}^{}^{/2}\Vert , 1992 .

[15]  Takayuki Furuta,et al.  NORM INEQUALITIES EQUIVALENT TO LÖWNER-HEINZ THEOREM , 1989 .

[16]  H. Cordes Spectral Theory of Linear Differential Operators and Comparison Algebras: Spectral theory of differential operators , 1987 .

[17]  W. Ballmann Manifolds of non positive curvature , 1985 .

[18]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[19]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[20]  Edoardo Vesentini,et al.  Invariant metrics on convex cones , 1976 .

[21]  Irving Segal,et al.  Notes towards the construction of nonlinear relativistic quantum fields. III: Properties of the $C^*$-dynamics for a certain class of interactions , 1969 .