Evidence for Two Distinct Populations of Type Ia Supernovae
暂无分享,去创建一个
[1] K. Nomoto. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .
[2] R. Webbink. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .
[3] A. V. Tutukov,et al. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .
[4] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[5] Ken'ichi Nomoto,et al. Accreting white dwarf models for CAL 83, CAL 87 and other ultrasoft X-ray sources in the LMC , 1992 .
[6] U. Munari. Symbiotic stars as precursors of the type Ia supernovae , 1992 .
[7] D. Schlegel,et al. The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .
[8] L. Ho,et al. The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .
[9] R. Kirshner,et al. SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .
[10] P. Nugent,et al. On the relative frequencies of spectroscopically normal and peculiar type Ia supernovae , 1993 .
[11] H. Nørgaard-Nielsen,et al. Interstellar matter in Shapley-Ames elliptical galaxies. II. The distribution of dust and ionized gas , 1994 .
[12] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[13] Type Ia supernovae: their origin and possible applications in cosmology. , 1997, Science.
[14] A. G.,et al. MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .
[15] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[16] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[17] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[18] K. Nomoto,et al. Evolution of 3-9 M☉ Stars for Z = 0.001-0.03 and Metallicity Effects on Type Ia Supernovae , 1998, astro-ph/9806336.
[19] G. Worthey,et al. Publications of the Astronomical Society of the Pacific The Distribution Of Heavy Elements In Spiral And Elliptical Galaxies , 1999 .
[20] J. Ashby. References and Notes , 1999 .
[21] E. Hertwich,et al. Technical Summary , 2022, The Ocean and Cryosphere in a Changing Climate.
[22] P. Nugent,et al. Metallicity Effects in Non-LTE Model Atmospheres of Type Ia Supernovae , 1999, astro-ph/9906016.
[23] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[24] N. Langer,et al. The First binary star evolution model producing a Chandrasekhar mass white dwarf , 2003, astro-ph/0402286.
[25] L. Wang,et al. SN 2003du: Signatures of the Circumstellar Environment in a Normal Type Ia Supernova? , 2003, astro-ph/0309639.
[26] Caltech,et al. SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.
[27] M. Turatto,et al. The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2005 .
[28] L. Bildsten,et al. The Type Ia Supernova Rate , 2005, astro-ph/0507456.
[29] J. M. Castro Cerón,et al. Long gamma-ray bursts and core-collapse supernovae have different environments. , 2006, Nature.
[30] Edward J. Wollack,et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.
[31] F. Mannucci,et al. Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.
[32] S. Majewski,et al. A New Method for Isolating M31 Red Giant Stars: The Discovery of Stars out to a Radial Distance of 165 kpc , 2006, astro-ph/0605171.
[33] A. J. Levan,et al. Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.
[34] Spectropolarimetric Diagnostics of Thermonuclear Supernova Explosions , 2006, Science.
[35] P. Chandra,et al. Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.
[36] R. Kirshner,et al. Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.
[37] T. Matheson,et al. A SECOND CASE OF VARIABLE Na i D LINES IN A HIGHLY REDDENED TYPE Ia SUPERNOVA , 2008, 0811.0002.
[38] F. Förster,et al. The nuclear diversity of Type Ia supernova explosions , 2008 .
[39] Y. Wadadekar,et al. Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .
[40] R. P. Butler,et al. VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA, , 2009, 0907.1083.
[41] R. Foley,et al. IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.
[42] J. Maund,et al. THE UNIFICATION OF ASYMMETRY SIGNATURES OF TYPE Ia SUPERNOVAE , 2010, 1008.0651.
[43] J. Sollerman,et al. An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.
[44] Ryan Chornock,et al. Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.
[45] Mohan Ganeshalingam,et al. Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.
[46] Zhanwen Han,et al. The helium star donor channel for the progenitors of Type Ia supernovae , 2009, 1003.4050.
[47] Nathaniel R. Butler,et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.
[48] R. M. Quimby,et al. Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features , 2011, Science.
[49] K. Alatalo,et al. The ATLAS3D project – IV. The molecular gas content of early-type galaxies , 2011, 1102.4633.
[50] Federica B. Bianco,et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.
[51] Emilio Falco,et al. THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.
[52] P. Brown,et al. A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA , 2011, 1110.2538.
[53] A. Riess,et al. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.
[54] L. Ho,et al. Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.
[55] G. Vaucouleurs,et al. Third Reference Catalogue of Bright Galaxies , 2012 .
[56] R. Kirshner,et al. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS , 2012, 1203.2916.
[57] Bradley E. Schaefer,et al. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509−67.5 , 2012, Nature.
[58] Nathaniel R. Butler,et al. A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.