Evidence for Two Distinct Populations of Type Ia Supernovae

Fast and Young Type Ia supernovae are thought to result from the thermonuclear explosion of a white dwarf star accreting material from a companion star in a binary system. Their adoption as cosmic yardsticks has led to the discovery of the accelerated expansion of the universe. Wang et al. (p. 170, published online 7 March) show that supernovae with higher expansion velocities are located in the central, brighter regions of their host galaxies and are found in larger, more luminous galaxies, suggesting that they are associated with younger stellar populations. The spectral diversity of a particular type of stellar explosion is tied to the stellar environment. Type Ia supernovae (SNe Ia) have been used as excellent standardizable candles for measuring cosmic expansion, but their progenitors are still elusive. Here, we report that the spectral diversity of SNe Ia is tied to their birthplace environments. We found that those with high-velocity ejecta are substantially more concentrated in the inner and brighter regions of their host galaxies than are normal-velocity SNe Ia. Furthermore, the former tend to inhabit larger and more luminous hosts. These results suggest that high-velocity SNe Ia likely originate from relatively younger and more metal-rich progenitors than do normal-velocity SNe Ia and are restricted to galaxies with substantial chemical evolution.

[1]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[2]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[3]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[4]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[5]  Ken'ichi Nomoto,et al.  Accreting white dwarf models for CAL 83, CAL 87 and other ultrasoft X-ray sources in the LMC , 1992 .

[6]  U. Munari Symbiotic stars as precursors of the type Ia supernovae , 1992 .

[7]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[8]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[9]  R. Kirshner,et al.  SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .

[10]  P. Nugent,et al.  On the relative frequencies of spectroscopically normal and peculiar type Ia supernovae , 1993 .

[11]  H. Nørgaard-Nielsen,et al.  Interstellar matter in Shapley-Ames elliptical galaxies. II. The distribution of dust and ionized gas , 1994 .

[12]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[13]  Type Ia supernovae: their origin and possible applications in cosmology. , 1997, Science.

[14]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[15]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[16]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[17]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[18]  K. Nomoto,et al.  Evolution of 3-9 M☉ Stars for Z = 0.001-0.03 and Metallicity Effects on Type Ia Supernovae , 1998, astro-ph/9806336.

[19]  G. Worthey,et al.  Publications of the Astronomical Society of the Pacific The Distribution Of Heavy Elements In Spiral And Elliptical Galaxies , 1999 .

[20]  J. Ashby References and Notes , 1999 .

[21]  E. Hertwich,et al.  Technical Summary , 2022, The Ocean and Cryosphere in a Changing Climate.

[22]  P. Nugent,et al.  Metallicity Effects in Non-LTE Model Atmospheres of Type Ia Supernovae , 1999, astro-ph/9906016.

[23]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[24]  N. Langer,et al.  The First binary star evolution model producing a Chandrasekhar mass white dwarf , 2003, astro-ph/0402286.

[25]  L. Wang,et al.  SN 2003du: Signatures of the Circumstellar Environment in a Normal Type Ia Supernova? , 2003, astro-ph/0309639.

[26]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[27]  M. Turatto,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2005 .

[28]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[29]  J. M. Castro Cerón,et al.  Long gamma-ray bursts and core-collapse supernovae have different environments. , 2006, Nature.

[30]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[31]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[32]  S. Majewski,et al.  A New Method for Isolating M31 Red Giant Stars: The Discovery of Stars out to a Radial Distance of 165 kpc , 2006, astro-ph/0605171.

[33]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[34]  Spectropolarimetric Diagnostics of Thermonuclear Supernova Explosions , 2006, Science.

[35]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[36]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[37]  T. Matheson,et al.  A SECOND CASE OF VARIABLE Na i D LINES IN A HIGHLY REDDENED TYPE Ia SUPERNOVA , 2008, 0811.0002.

[38]  F. Förster,et al.  The nuclear diversity of Type Ia supernova explosions , 2008 .

[39]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[40]  R. P. Butler,et al.  VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA, , 2009, 0907.1083.

[41]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[42]  J. Maund,et al.  THE UNIFICATION OF ASYMMETRY SIGNATURES OF TYPE Ia SUPERNOVAE , 2010, 1008.0651.

[43]  J. Sollerman,et al.  An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.

[44]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[45]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[46]  Zhanwen Han,et al.  The helium star donor channel for the progenitors of Type Ia supernovae , 2009, 1003.4050.

[47]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[48]  R. M. Quimby,et al.  Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features , 2011, Science.

[49]  K. Alatalo,et al.  The ATLAS3D project – IV. The molecular gas content of early-type galaxies , 2011, 1102.4633.

[50]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[51]  Emilio Falco,et al.  THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.

[52]  P. Brown,et al.  A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA , 2011, 1110.2538.

[53]  A. Riess,et al.  THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.

[54]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[55]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[56]  R. Kirshner,et al.  LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS , 2012, 1203.2916.

[57]  Bradley E. Schaefer,et al.  An absence of ex-companion stars in the type Ia supernova remnant SNR 0509−67.5 , 2012, Nature.

[58]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.