Applications for Cutting and Packing Problems

Dual-feasible functions have been designed specifically for the cutting-stock problem. As shown in Chap. 1, they arise naturally from the dual of the classical formulation of Gilmore and Gomory for this problem. Since many problems can be modeled using a similar formulation, it makes sense to explore the concept of dual-feasible function within a more general class of applications. A first approach is to considermulti-dimensional dual-feasible functions,which can be used to derive lower bounds for the vector packing problem. Here, we also consider different packing problems with more complicated subproblems such as multi-dimensional orthogonal packing and packing with conflicts. Dual-feasible functions can still be derived in these cases.

[1]  François Vanderbeck,et al.  Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem , 2000, Oper. Res..

[2]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[3]  Cláudio Alves,et al.  Constructing general dual-feasible functions , 2015, Oper. Res. Lett..

[4]  Andrea Lodi,et al.  Strengthening Chvátal-Gomory cuts and Gomory fractional cuts , 2002, Oper. Res. Lett..

[5]  Alberto Caprara,et al.  Bidimensional Packing by Bilinear Programming , 2005, IPCO.

[6]  Cláudio Alves,et al.  Theoretical investigations on maximal dual feasible functions , 2010, Oper. Res. Lett..

[7]  Frits C. R. Spieksma,et al.  A branch-and-bound algorithm for the two-dimensional vector packing problem , 1994, Comput. Oper. Res..

[8]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[9]  Cláudio Alves,et al.  On the Properties of General Dual-Feasible Functions , 2014, ICCSA.

[10]  Cláudio Alves,et al.  A survey of dual-feasible and superadditive functions , 2010, Ann. Oper. Res..

[11]  José M. Valério de Carvalho A Note on Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problems , 2002, Comput. Optim. Appl..

[12]  Volker Kaibel,et al.  Integer Programming and Combinatorial Optimization, 11th International IPCO Conference, Berlin, Germany, June 8-10, 2005, Proceedings , 2005, IPCO.

[13]  Jacques Carlier,et al.  New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation , 2007, Comput. Oper. Res..

[14]  Jacques Carlier,et al.  Computing redundant resources for the resource constrained project scheduling problem , 2007, Eur. J. Oper. Res..

[15]  Sándor P. Fekete,et al.  New classes of fast lower bounds for bin packing problems , 2001, Math. Program..

[16]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[17]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[18]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[19]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[20]  José M. Valério de Carvalho,et al.  Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..

[21]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[22]  El-Ghazali Talbi,et al.  New lower bounds for bin packing problems with conflicts , 2010, Eur. J. Oper. Res..

[23]  Sándor P. Fekete,et al.  A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems , 2004, Math. Methods Oper. Res..

[24]  Claude-Alain Burdet,et al.  A Subadditive Approach to Solve Linear Integer Programs , 1977 .

[25]  Pamela H. Vance,et al.  Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..

[26]  François Clautiaux New collaborative approaches for bin-packing problems , 2010 .

[27]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[28]  Sanjeeb Dash,et al.  Valid inequalities based on simple mixed-integer sets , 2006, Math. Program..

[29]  Antoine Jouglet,et al.  A new lower bound for the non-oriented two-dimensional bin-packing problem , 2007, Oper. Res. Lett..

[30]  Cláudio Alves,et al.  Cutting and packing : problems, models and exact algorithms , 2005 .

[31]  Cláudio Alves,et al.  Computing Valid Inequalities for General Integer Programs using an Extension of Maximal Dual Feasible Functions to Negative Arguments , 2012, ICORES.

[32]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[33]  J. M. Valério de Carvalho,et al.  On the extremality of maximal dual feasible functions , 2012, Oper. Res. Lett..

[34]  George S. Lueker,et al.  Bin packing with items uniformly distributed over intervals [a,b] , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[35]  Marco A. Boschetti,et al.  The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case , 2003, 4OR.

[36]  Allan Borodin,et al.  On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..

[37]  Cláudio Alves,et al.  Multidimensional dual-feasible functions and fast lower bounds for the vector packing problem , 2014, Eur. J. Oper. Res..

[38]  W. R. Pulleyblank,et al.  Polyhedral Combinatorics , 1989, ISMP.

[39]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .