Applications for Cutting and Packing Problems
暂无分享,去创建一个
Cláudio Alves | Jürgen Rietz | François Clautiaux | José Manuel Valério de Carvalho | J. V. D. Carvalho | Cláudio Alves | François Clautiaux | J. Rietz
[1] François Vanderbeck,et al. Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem , 2000, Oper. Res..
[2] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[3] Cláudio Alves,et al. Constructing general dual-feasible functions , 2015, Oper. Res. Lett..
[4] Andrea Lodi,et al. Strengthening Chvátal-Gomory cuts and Gomory fractional cuts , 2002, Oper. Res. Lett..
[5] Alberto Caprara,et al. Bidimensional Packing by Bilinear Programming , 2005, IPCO.
[6] Cláudio Alves,et al. Theoretical investigations on maximal dual feasible functions , 2010, Oper. Res. Lett..
[7] Frits C. R. Spieksma,et al. A branch-and-bound algorithm for the two-dimensional vector packing problem , 1994, Comput. Oper. Res..
[8] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[9] Cláudio Alves,et al. On the Properties of General Dual-Feasible Functions , 2014, ICCSA.
[10] Cláudio Alves,et al. A survey of dual-feasible and superadditive functions , 2010, Ann. Oper. Res..
[11] José M. Valério de Carvalho. A Note on Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problems , 2002, Comput. Optim. Appl..
[12] Volker Kaibel,et al. Integer Programming and Combinatorial Optimization, 11th International IPCO Conference, Berlin, Germany, June 8-10, 2005, Proceedings , 2005, IPCO.
[13] Jacques Carlier,et al. New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation , 2007, Comput. Oper. Res..
[14] Jacques Carlier,et al. Computing redundant resources for the resource constrained project scheduling problem , 2007, Eur. J. Oper. Res..
[15] Sándor P. Fekete,et al. New classes of fast lower bounds for bin packing problems , 2001, Math. Program..
[16] Ralph E. Gomory,et al. An algorithm for integer solutions to linear programs , 1958 .
[17] George B. Dantzig,et al. Decomposition Principle for Linear Programs , 1960 .
[18] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[19] R. Gomory,et al. A Linear Programming Approach to the Cutting-Stock Problem , 1961 .
[20] José M. Valério de Carvalho,et al. Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..
[21] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[22] El-Ghazali Talbi,et al. New lower bounds for bin packing problems with conflicts , 2010, Eur. J. Oper. Res..
[23] Sándor P. Fekete,et al. A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems , 2004, Math. Methods Oper. Res..
[24] Claude-Alain Burdet,et al. A Subadditive Approach to Solve Linear Integer Programs , 1977 .
[25] Pamela H. Vance,et al. Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..
[26] François Clautiaux. New collaborative approaches for bin-packing problems , 2010 .
[27] David S. Johnson,et al. Near-optimal bin packing algorithms , 1973 .
[28] Sanjeeb Dash,et al. Valid inequalities based on simple mixed-integer sets , 2006, Math. Program..
[29] Antoine Jouglet,et al. A new lower bound for the non-oriented two-dimensional bin-packing problem , 2007, Oper. Res. Lett..
[30] Cláudio Alves,et al. Cutting and packing : problems, models and exact algorithms , 2005 .
[31] Cláudio Alves,et al. Computing Valid Inequalities for General Integer Programs using an Extension of Maximal Dual Feasible Functions to Negative Arguments , 2012, ICORES.
[32] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[33] J. M. Valério de Carvalho,et al. On the extremality of maximal dual feasible functions , 2012, Oper. Res. Lett..
[34] George S. Lueker,et al. Bin packing with items uniformly distributed over intervals [a,b] , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[35] Marco A. Boschetti,et al. The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case , 2003, 4OR.
[36] Allan Borodin,et al. On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..
[37] Cláudio Alves,et al. Multidimensional dual-feasible functions and fast lower bounds for the vector packing problem , 2014, Eur. J. Oper. Res..
[38] W. R. Pulleyblank,et al. Polyhedral Combinatorics , 1989, ISMP.
[39] Hanif D. Sherali,et al. Linear Programming and Network Flows , 1977 .