Pseudorandom Generator Based on Hard Lattice Problem

This paper studies how to construct a pseudorandom generator using hard lattice problems. We use a variation of the classical hard problem Inhomogeneous Small Integer Solution ISIS of lattice, say Inhomogeneous Subset Sum Solution ISSS. ISSS itself is a hash function. Proving the preimage sizes ISSS hash function images are almost the same, we construct a pseudorandom generator using the method in [GKL93]. Also, we construct a pseudoentropy generator using the method in [HILL99]. Most theoretical PRG constructions are not feasible in fact as they require rather long random bits as seeds. Our PRG construction only requires seed length to be O(n log2 n) which is feasible practically.

[1]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[2]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[3]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[4]  Hugo Krawczyk,et al.  On the Existence of Pseudorandom Generators , 1993, SIAM J. Comput..

[5]  Damien Stehlé,et al.  Classical hardness of learning with errors , 2013, STOC '13.

[6]  Chris Peikert,et al.  Generating Shorter Bases for Hard Random Lattices , 2009, STACS.

[7]  Miklós Ajtai,et al.  Generating Hard Instances of the Short Basis Problem , 1999, ICALP.

[8]  Craig Gentry,et al.  Trapdoors for hard lattices and new cryptographic constructions , 2008, IACR Cryptol. ePrint Arch..

[9]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[10]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[11]  Rafael Hirschfeld,et al.  Pseudorandom Generators and Complexity Classes , 1989, Advances in Computational Research.

[12]  Cynthia Dwork,et al.  A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.

[13]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[14]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[15]  Chris Peikert,et al.  Public-key cryptosystems from the worst-case shortest vector problem: extended abstract , 2009, STOC '09.

[16]  Phong Q. Nguyen,et al.  Sieve algorithms for the shortest vector problem are practical , 2008, J. Math. Cryptol..

[17]  Chris Peikert,et al.  Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller , 2012, IACR Cryptol. ePrint Arch..

[18]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[19]  Nicolas Gama,et al.  Finding short lattice vectors within mordell's inequality , 2008, STOC.

[20]  Hugo Krawczyk,et al.  New Hash Functions For Message Authentication , 1995, EUROCRYPT.

[21]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Daniele Micciancio,et al.  A Deterministic Single Exponential Time Algorithm for Most Lattice Problems based on Voronoi Cell Computations ( Extended Abstract ) , 2009 .

[23]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[24]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[25]  Dorit Aharonov,et al.  Lattice problems in NP ∩ coNP , 2005, JACM.

[26]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[27]  Leonid A. Levin,et al.  One way functions and pseudorandom generators , 1987, Comb..

[28]  Dorit Aharonov,et al.  Lattice Problems in NP cap coNP , 2004, FOCS.