Switchable self-protected attractions in DNA-functionalized colloids.

[1]  David J. Pine,et al.  Towards self-replicating materials of DNA-functionalized colloids , 2009 .

[2]  N. Seeman,et al.  Simple quantitative model for the reversible association of DNA coated colloids. , 2009, Physical review letters.

[3]  O. Gang,et al.  Phase behavior of nanoparticles assembled by DNA linkers. , 2009, Physical review letters.

[4]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[5]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[6]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[7]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[8]  J. Crocker,et al.  Nanomaterials: Golden handshake , 2008, Nature.

[9]  O. Gang,et al.  DNA-regulated micro- and nanoparticle assembly. , 2007, Small.

[10]  D. Frenkel,et al.  A finite-cluster phase in λ-DNA-coated colloids. , 2007, Soft matter.

[11]  Oleg Gang,et al.  DNA-based approach for interparticle interaction control. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[12]  Bo Sun,et al.  Optical forces arising from phase gradients , 2007, OPTO.

[13]  C. Robic,et al.  Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces , 2006, Proceedings of the National Academy of Sciences.

[14]  A. Tkachenko,et al.  Errorproof programmable self-assembly of DNA-nanoparticle clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  J. Crocker,et al.  Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Crocker,et al.  Colloidal interactions and self-assembly using DNA hybridization. , 2005, Physical review letters.

[17]  M. Zuker,et al.  Prediction of hybridization and melting for double-stranded nucleic acids. , 2004, Biophysical journal.

[18]  Daniel A. Hammer,et al.  DNA-driven assembly of bidisperse, micron-sized colloids , 2003 .

[19]  D. Grier A revolution in optical manipulation , 2003, Nature.

[20]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[21]  A. Tkachenko Morphological diversity of DNA-colloidal self-assembly. , 2002, Physical review letters.

[22]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[23]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2000, Nature.

[24]  George C Schatz,et al.  What controls the melting properties of DNA-linked gold nanoparticle assemblies? , 2000, Journal of the American Chemical Society.

[25]  A Libchaber,et al.  Kinetics of conformational fluctuations in DNA hairpin-loops. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[27]  J D Chambers,et al.  Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Caruthers,et al.  Gene synthesis machines: DNA chemistry and its uses. , 1985, Science.

[29]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[30]  J. Crocker,et al.  Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. , 2009, Nature materials.