Uncertain behaviours of integrated circuits improve computational performance

Improvements to the performance of conventional computers have mainly been achieved through semiconductor scaling; however, scaling is reaching its limitations. Natural phenomena, such as quantum superposition and stochastic resonance, have been introduced into new computing paradigms to improve performance beyond these limitations. Here, we explain that the uncertain behaviours of devices due to semiconductor scaling can improve the performance of computers. We prototyped an integrated circuit by performing a ground-state search of the Ising model. The bit errors of memory cell devices holding the current state of search occur probabilistically by inserting fluctuations into dynamic device characteristics, which will be actualised in the future to the chip. As a result, we observed more improvements in solution accuracy than that without fluctuations. Although the uncertain behaviours of devices had been intended to be eliminated in conventional devices, we demonstrate that uncertain behaviours has become the key to improving computational performance.

[1]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[2]  Ravishankar K. Iyer,et al.  Experimental evaluation , 1995 .

[3]  Sergiy Butenko,et al.  On greedy construction heuristics for the MAX-CUT problem , 2007, Int. J. Comput. Sci. Eng..

[4]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[5]  D. Frank,et al.  Reduction of random telegraph noise in High-к / metal-gate stacks for 22 nm generation FETs , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[6]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[7]  G. Dueck New optimization heuristics , 1993 .

[8]  D. Frank,et al.  Impact of HK / MG stacks and future device scaling on RTN , 2011, 2011 International Reliability Physics Symposium.

[9]  Hiroyuki Mizuno,et al.  24.3 20k-spin Ising chip for combinational optimization problem with CMOS annealing , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[10]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[11]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[14]  Hiroyuki Mizuno,et al.  Spatial computing architecture using randomness of memory cell stability under voltage control , 2013, 2013 European Conference on Circuit Theory and Design (ECCTD).

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  Srivatsan Chellappa,et al.  Improved circuits for microchip identification using SRAM mismatch , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[17]  Yoshihisa Yamamoto,et al.  Mapping of Ising models onto injection-locked laser systems. , 2011, Optics express.

[18]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[19]  Masanao Yamaoka A 20k-spin Ising Chip for Combinatorial Optimization Problem with CMOS Annealing , 2015 .

[20]  H. Kawaguchi,et al.  Bit error rate estimation in SRAM considering temperature fluctuation , 2012, Thirteenth International Symposium on Quality Electronic Design (ISQED).

[21]  Marc A. Kastner,et al.  Prospects for Quantum Dot Implementation of Adiabatic Quantum Computers for Intractable Problems , 2005, Proceedings of the IEEE.

[22]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[23]  Igor L. Markov,et al.  Limits on fundamental limits to computation , 2014, Nature.

[24]  S. Brush History of the Lenz-Ising Model , 1967 .

[25]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[26]  Kiyoshi Takeuchi,et al.  Comprehensive SRAM design methodology for RTN reliability , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[27]  K. Takeuchi,et al.  A study of the threshold voltage variation for ultra-small bulk and SOI CMOS , 2001 .

[28]  J. Jopling,et al.  Erratic fluctuations of sram cache vmin at the 90nm process technology node , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[29]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[30]  Hiroyuki Kawai,et al.  A stable chip-ID generating physical uncloneable function using random address errors in SRAM , 2012, 2012 IEEE International SOC Conference.

[31]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  Daniel A. Lidar,et al.  Max 2-SAT with up to 108 qubits , 2013, 1307.3931.

[34]  D. Frank,et al.  Understanding short-term BTI behavior through comprehensive observation of gate-voltage dependence of RTN in highly scaled high-κ / metal-gate pFETs , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[35]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[36]  K. Takeuchi,et al.  Direct observation of RTN-induced SRAM failure by accelerated testing and its application to product reliability assessment , 2010, 2010 Symposium on VLSI Technology.

[37]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[38]  B. M. Fulk MATH , 1992 .

[39]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[40]  Toshiro Hiramoto,et al.  Re-Examination of Impact of Intrinsic Dopant Fluctuations on Static RAM (SRAM) Static Noise Margin , 2005 .

[41]  T. Skotnicki,et al.  The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance , 2005, IEEE Circuits and Devices Magazine.

[42]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[43]  Borivoje Nikolic,et al.  Impact of random telegraph signaling noise on SRAM stability , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[44]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[45]  Matthias Troyer,et al.  Optimised simulated annealing for Ising spin glasses , 2014, Comput. Phys. Commun..

[46]  T. Neumann Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[47]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[48]  Masaki Hamamoto,et al.  An energy-efficient parallel-processing method based on master-hibernating DVFS , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[49]  P. Stolk,et al.  Modeling statistical dopant fluctuations in MOS transistors , 1998 .

[50]  Rob A. Rutenbar,et al.  Simulated annealing algorithms: an overview , 1989, IEEE Circuits and Devices Magazine.

[51]  W. R. Daasch,et al.  IC identification circuit using device mismatch , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[52]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.