Adaptive Divisible Load Model for Scheduling Data-Intensive Grid Applications

In many data grid applications, data can be decomposed into multiple independent sub datasets and schedule for parallel execution and analysis. Divisible Load Theory (DLT) is a powerful tool for modelling data-intensive grid problems where both communication and computation load is partitionable. This paper presents an Adaptive DLT (ADLT) model for scheduling data-intensive grid applications. This model reduces the expected processing time approximately 80% for communication intensive applications and 60% for computation intensive applications compared to the previous DLT model. Experimental results show that this model can balance the loads efficiently.