Coupling a NURBS contact interface with a higher order finite element discretization for contact problems using the mortar method

In this paper, a contact problem between two bodies, discretized by finite elements, is solved by adding an auxiliary NURBS layer between the bodies. The advantages of a smooth contact formulation in a NURBS approach are combined with simple mesh generation procedures for the bodies discretized with finite elements. Mesh tying conditions are used to couple the NURBS layer with the finite element discretization. The NURBS layer is the master side for contact and mesh tying. Mesh tying is enforced either using pointwise or mortar type approaches. Frictionless 2D and 3D contact problems are considered using small deformations. The contact problem is discretized with the mortar method and a penalty approach is used to enforce the contact constraints. A robust element-based quadrature is applied for mortar tying and contact discretizations, thus avoiding computationally expensive segmentation.

[1]  Peter Wriggers,et al.  Isogeometric contact: a review , 2014 .

[2]  D. M. Neto,et al.  Surface Smoothing Procedures in Computational Contact Mechanics , 2017 .

[3]  Jörg F. Unger,et al.  Neural networks in a multiscale approach for concrete , 2009 .

[4]  Peter Wriggers,et al.  2D contact smooth formulation based on the mortar method , 2012 .

[5]  Roger A. Sauer,et al.  Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding , 2015 .

[6]  Roger A. Sauer,et al.  Enriched contact finite elements for stable peeling computations , 2011 .

[7]  Peter Wriggers,et al.  Computational Contact Mechanics with the Finite Element Method , 2017 .

[8]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[9]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[10]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[11]  T. Laursen,et al.  A framework for development of surface smoothing procedures in large deformation frictional contact analysis , 2001 .

[12]  I. Babuska The Finite Element Method with Penalty , 1973 .

[13]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[14]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[15]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[16]  P. Solín Partial differential equations and the finite element method , 2005 .

[17]  Alexander Popp,et al.  Mortar Methods for Computational Contact Mechanics and General Interface Problems , 2012 .

[18]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[19]  P. Wriggers,et al.  A C1-continuous formulation for 3D finite deformation frictional contact , 2002 .

[20]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[21]  Pavel Šolín Partial Differential Equations and the Finite Element Method: Šolín/Method , 2005 .

[22]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[23]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[24]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[25]  Gerhard A. Holzapfel,et al.  Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems , 2003 .

[26]  Wolfgang A. Wall,et al.  Segment-based vs. element-based integration for mortar methods in computational contact mechanics , 2015 .

[27]  Laura De Lorenzis,et al.  Reduced integration at superconvergent points in isogeometric analysis , 2018 .

[28]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[29]  Roger A. Sauer,et al.  NURBS-enriched contact finite elements , 2014 .

[30]  Wolfgang A. Wall,et al.  Dual mortar methods for computational contact mechanics – overview and recent developments , 2014 .

[31]  Peter Wriggers,et al.  A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .

[32]  Giancarlo Sangalli,et al.  Matrix-free weighted quadrature for a computationally efficient isogeometric k-method , 2017, Computer Methods in Applied Mechanics and Engineering.

[33]  Michael A. Puso,et al.  A 3D mortar method for solid mechanics , 2004 .

[34]  L. Lorenzis,et al.  A regularized model for impact in explicit dynamics applied to the split Hopkinson pressure bar , 2016 .