Distance transformations on hexagonal grids

Abstract Distance transformations are important tools for processing binary digital images. Pseudo-Euclidean, or weighted, distance transformations use only local operations and preferably integer arithmetic. In this paper good pseudo-Euclidean distance transformations on hexagonal grids are derived.

[1]  Gabriella Sanniti di Baja,et al.  Skeletonizing the distance transform on the hexagonal grid , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[2]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[3]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[4]  Edward S. Deutsch,et al.  Thinning algorithms on rectangular, hexagonal, and triangular arrays , 1972, Commun. ACM.

[5]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[6]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[7]  Azriel Rosenfeld,et al.  Distance on a Hexagonal Grid , 1976, IEEE Transactions on Computers.

[8]  Marcel J. E. Golay,et al.  Hexagonal Parallel Pattern Transformations , 1969, IEEE Transactions on Computers.