On the enrichment zone size for optimal convergence rate of the Generalized/Extended Finite Element Method
暂无分享,去创建一个
[1] Varun Gupta,et al. Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics , 2015 .
[2] I. Babuska,et al. Finite Element Analysis , 2021 .
[3] Eugenio Giner,et al. Enhanced blending elements for XFEM applied to linear elastic fracture mechanics , 2009 .
[4] T. Belytschko,et al. A review of extended/generalized finite element methods for material modeling , 2009 .
[5] N. Moës,et al. Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .
[6] Jean-Herve Prevost,et al. MODELING QUASI-STATIC CRACK GROWTH WITH THE EXTENDED FINITE ELEMENT METHOD PART II: NUMERICAL APPLICATIONS , 2003 .
[7] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[8] Ivo Babuška,et al. Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .
[9] I. Babuska,et al. Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .
[10] Serge Nicaise,et al. Optimal convergence analysis for the extended finite element method , 2011 .
[11] J. Tinsley Oden,et al. An hp Adaptive Method Using Clouds C , 2006 .
[12] Eitan Grinspun,et al. Harmonic enrichment functions: A unified treatment of multiple, intersecting and branched cracks in the extended finite element method , 2010 .
[13] Xiangmin Jiao,et al. hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .
[14] L. Knöfel,et al. Oden, J. T. / Reddy, J. N., An Introduction to the Mathematical Theory of Finite Elements. New York‐London‐Sydney‐Toronto. John Wiley & Sons. 1976. XII, 429 S., £ 17.50. $ 32.00 , 1978 .
[15] E. Grinspun,et al. Harmonic Enrichment Functions : A Unified Treatment of Multiple, Intersecting, Branched Cracks , 2010 .
[16] Marc Alexander Schweitzer,et al. Stable enrichment and local preconditioning in the particle-partition of unity method , 2011, Numerische Mathematik.
[17] Michael Griebel,et al. A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..
[18] Glaucio H. Paulino,et al. Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .
[19] T. Fries. A corrected XFEM approximation without problems in blending elements , 2008 .
[20] Michel Salaün,et al. High‐order extended finite element method for cracked domains , 2005 .
[21] I. Babuska,et al. Stable Generalized Finite Element Method (SGFEM) , 2011, 1104.0960.
[22] T. Belytschko,et al. Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .
[23] T. Liszka,et al. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .
[24] T. Belytschko,et al. Extended finite element method for three-dimensional crack modelling , 2000 .
[25] O. C. Zienkiewicz,et al. A new cloud-based hp finite element method , 1998 .
[26] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[27] Roland Glowinski,et al. An introduction to the mathematical theory of finite elements , 1976 .
[28] Ivo Babuška,et al. A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics , 2013 .
[29] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[30] Carlos Armando Duarte,et al. Extraction of stress intensity factors from generalized finite element solutions , 2005 .
[31] I. Babuska,et al. The Partition of Unity Method , 1997 .
[32] J. Oden,et al. H‐p clouds—an h‐p meshless method , 1996 .