Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag–Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59–80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation—even with a comparable number of global degrees of freedom—fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.

[1]  Vincenzo Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[2]  R. Stieglitz,et al.  Experimental demonstration of a homogeneous two-scale dynamo , 2000 .

[3]  Pablo D. Mininni,et al.  Parallel Simulations in Turbulent MHD , 2005 .

[4]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[5]  P D Mininni,et al.  Imprint of large-scale flows on turbulence. , 2005, Physical review letters.

[6]  P. D. Mininni,et al.  A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows , 2005 .

[7]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[8]  Kai Germaschewski,et al.  Spectral-element adaptive refinement magnetohydrodynamic simulations of the island coalescence instability , 2006 .

[9]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[10]  Paul H. Rutherford,et al.  Nonlinear growth of the tearing mode , 1973 .

[11]  Aimé Fournier,et al.  Exact calculation of Fourier series in nonconforming spectral-element methods , 2005, J. Comput. Phys..

[12]  Annick Pouquet,et al.  Numerical solutions of the three-dimensional magnetohydrodynamic alpha model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Annick Pouquet,et al.  Inertial ranges and resistive instabilities in two‐dimensional magnetohydrodynamic turbulence , 1989 .

[14]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[15]  Francis Loth,et al.  Spectral Element Methods for Transitional Flows , 2003 .

[16]  R. Henderson,et al.  Dynamic refinement algorithms for spectral element methods , 1997 .

[17]  Russel E. Caflisch,et al.  Remarks on Singularities, Dimension and Energy Dissipation for Ideal Hydrodynamics and MHD , 1997 .

[18]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[19]  Daniele Carati,et al.  Dynamic gradient-diffusion subgrid models for incompressible magnetohydrodynamic turbulence , 2002 .

[20]  Aimé Fournier,et al.  Geophysical-astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation , 2006, J. Comput. Phys..

[21]  Catherine Mavriplis,et al.  Adaptive mesh strategies for the spectral element method , 1992 .

[22]  P D Mininni,et al.  Small-scale structures in three-dimensional magnetohydrodynamic turbulence. , 2006, Physical review letters.

[23]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[24]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[25]  R Volk,et al.  Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. , 2007, Physical review letters.

[26]  Rainer Grauer,et al.  Adaptive Mesh Refinement for Singular Current Sheets in Incompressible Magnetohydrodynamic Flows , 1997 .

[27]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[28]  M D Nornberg,et al.  Observation of a turbulence-induced large scale magnetic field. , 2006, Physical review letters.

[29]  Annick Pouquet,et al.  Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: direct numerical simulations and Lagrangian averaged modeling. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  William H. Matthaeus,et al.  Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind , 1982 .

[31]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[32]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .

[33]  T Gundrum,et al.  Magnetic field saturation in the Riga dynamo experiment. , 2001, Physical review letters.

[34]  Pablo D. Mininni,et al.  MHD simulations and astrophysical applications , 2005 .

[35]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[36]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[37]  Cary Forest,et al.  Erratum: Observation of a Turbulence-Induced Large Scale Magnetic Field [Phys. Rev. Lett.PRLTAO0031-9007 96, 055002 (2006)] , 2006 .

[38]  Walter M. Elsasser,et al.  The Hydromagnetic Equations , 1950 .

[39]  Francis Loth,et al.  Spectral Element Methods for Transitional Flows in Complex Geometries , 2002, J. Sci. Comput..