Bounded solutions of a $k$-Hessian equation in a ball

We consider the problem \begin{equation}\label{Eq:Abstract} (1)\;\;\;\begin{cases} S_k(D^2u)= \lambda (1-u)^q &\mbox{in }\;\; B,\\ u 2k$ ($k\in \mathbb{N}$), $\lambda>0$ and $q > k$. We study the existence of negative bounded radially symmetric solutions of (1). In the critical case, that is when $q$ equals Tso's critical exponent $q=\frac{(n+2)k}{n-2k}=:q^*(k)$, we obtain exactly either one or two solutions depending on the parameters. Further, we express such solutions explicitly in terms of Bliss functions. The supercritical case is analysed following the ideas develop by Joseph and Lundgren in their classical work [27]. In particular, we establish an Emden-Fowler transformation which seems to be new in the context of the $k$-Hessian operator. We also find a critical exponent, defined by \begin{equation*} q_{JL}(k)= \begin{cases} k\frac{(k+1)n-2(k-1)-2\sqrt{2[(k+1)n-2k]}}{(k+1)n-2k(k+3)-2\sqrt{2[(k+1)n-2k]}}, & n>2k+8,\\ \infty, & 2k < n \leq 2k+8, \end{cases} \end{equation*} which allows us to determinate the multiplicity of the solutions to (1) int the two cases $q^*(k)\leq q < q_{JL}(k)$ and $q\geq q_{JL}(k)$. Moreover, we point out that, for $k=1$, the exponent $q_{JL}(k)$ coincides with the classical Joseph-Lundgren exponent.

[1]  Xu-jia Wang The k-Hessian Equation , 2009 .

[2]  Geometric analysis and PDEs , 2009 .

[3]  K. Schmitt,et al.  The Liouville–Bratu–Gelfand Problem for Radial Operators , 2002 .

[4]  J. Bao,et al.  Necessary and sufficient conditions on existence and convexity of solutions for Dirichlet problems of Hessian equations on exterior domains , 2012 .

[5]  L. Dupaigne Stable Solutions of Elliptic Partial Differential Equations , 2011 .

[6]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[7]  Kazuhiro Takimoto,et al.  A Bernstein type theorem for parabolic k-Hessian equations , 2015 .

[8]  J. Urbas On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations , 1990 .

[9]  Klaus Schmitt,et al.  Radial Solutions of Quasilinear Elliptic Differential Equations , 2004 .

[10]  P. Clément,et al.  Some existence and non‐existence results for a homogeneous quasilinear problem , 1998 .

[11]  R. Fowler FURTHER STUDIES OF EMDEN'S AND SIMILAR DIFFERENTIAL EQUATIONS , 1931 .

[12]  K. Tso Remarks on critical exponents for Hessian operators , 1990 .

[13]  P. Clément,et al.  Quasilinear elliptic equations with critical exponents , 1996 .

[14]  Basilis Gidas,et al.  Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth , 1989 .

[15]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[16]  Haim Brezis,et al.  Blow up for $u_t-\Delta u=g(u)$ revisited , 1996, Advances in Differential Equations.

[17]  Xu-jia Wang,et al.  A variational theory of the Hessian equation , 2001 .

[18]  Mario Milman,et al.  Monge Ampère equation : applications to geometry and optimization : NSF-CBMS Conference on the Monge Ampère Equation : Applications to Geometry and Optimization, July 9-13, 1997, Florida Atlantic University , 1999 .

[19]  Nunzia Gavitone,et al.  Upper bounds for the eigenvalues of Hessian equations , 2012, 1209.0877.

[20]  Hessian measures II , 1999, math/9909199.

[21]  S. Trudinger Weak solutions of hessian equations , 1997 .

[22]  T. Cazenave,et al.  BLOW UP FOR u, -b,.u = g(u) REVISITED , 2005 .

[23]  Isoperimetric estimates for eigenfunctions of Hessian operators , 2009 .

[24]  Haim Brezis,et al.  Blow-up solutions of some nonlinear elliptic problems , 1997 .

[25]  K. Tso On symmetrization and Hessian equations , 1981 .

[26]  Jon Jacobsen,et al.  A Liouville-Gelfand Equation for k-Hessian Operators , 2004 .

[27]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[28]  The Lane-Emden Function and Nonlinear Eigenvalues Problems , 2009 .

[29]  On the Symmetry of Solutions to a k-Hessian Type Equation , 2013 .

[30]  D. Boyd An Integral Inequality (D. J. Newman) , 1970 .

[31]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[32]  Chao-Jiang Xu,et al.  C1,1 solution of the Dirichlet problem for degenerate k-Hessian equations , 2013, 1309.4204.

[33]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[34]  Neil S. Trudinger,et al.  On the Dirichlet problem for Hessian equations , 1995 .

[35]  L. Montoro,et al.  Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$ , 2014, 1406.6162.

[36]  J. Spruck,et al.  The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian , 1985 .

[37]  Weighted eigenvalue problems for Hessian equations , 2010 .

[38]  Jon Jacobsen GLOBAL BIFURCATION PROBLEMS ASSOCIATED WITH k-HESSIAN OPERATORS , 1999 .

[39]  F. Gazzola,et al.  SOME REMARKS ON THE EQUATION FOR VARYING λ, p AND VARYING DOMAINS* , 2002 .

[40]  I. M. Gel'fand,et al.  Some problems in the theory of quasilinear equations , 1987 .