Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states

It is shown that local distinguishability of orthogonal mixed states can be completely characterized by local distinguishability of their supports irrespective of entanglement and mixedness of the states. This leads to two kinds of upper bounds on the number of perfect LOCC distinguishable orthogonal mixed states. The first one depends only on pure-state entanglement within the supports of the states, and therefore may be easy to compute in many instances. The second bound is optimal in the sense that it optimizes the bounding quantities, not necessarily function of entanglement alone, over all orthogonal mixed state ensembles (satisfying certain conditions) admissible within the supports of the density matrices.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  John Watrous,et al.  Bipartite subspaces having no bases distinguishable by local operations and classical communication. , 2005, Physical review letters.

[3]  M. B. Plenio,et al.  Entanglement of multiparty stabilizer, symmetric, and antisymmetric states , 2007, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[4]  A. Sen De,et al.  Distinguishability of Bell states. , 2001, Physical Review Letters.

[5]  Michael Nathanson Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases , 2005 .

[6]  M. Steiner Generalized robustness of entanglement , 2003, quant-ph/0304009.

[7]  M. Horodecki,et al.  Local indistinguishability: more nonlocality with less entanglement. , 2003, Physical review letters.

[8]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[9]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[10]  Anthony Chefles Condition for unambiguous state discrimination using local operations and classical communication , 2004 .

[11]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  W. Wootters,et al.  Optimal detection of quantum information. , 1991, Physical review letters.

[14]  S. Bandyopadhyay Entanglement and perfect discrimination of a class of multiqubit states by local operations and classical communication , 2010 .

[15]  L. Hardy,et al.  Nonlocality, asymmetry, and distinguishing bipartite states. , 2002, Physical review letters.

[16]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[17]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[18]  Somshubhro Bandyopadhyay,et al.  More nonlocality with less purity. , 2011, Physical review letters.

[19]  Debasis Sarkar,et al.  Distinguishability of maximally entangled states , 2004 .

[20]  H. Fan Distinguishability and indistinguishability by local operations and classical communication. , 2004, Physical review letters.

[21]  Yuan Feng,et al.  Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. , 2007, Physical review letters.

[22]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[23]  A. Harrow,et al.  Robustness of quantum gates in the presence of noise , 2003, quant-ph/0301108.

[24]  D. Markham,et al.  Optimal local discrimination of two multipartite pure states , 2001, quant-ph/0102073.

[25]  Vedral,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[26]  H. Barnum,et al.  Monotones and invariants for multi-particle quantum states , 2001, quant-ph/0103155.

[27]  Debasis Sarkar,et al.  Local indistinguishability of orthogonal pure states by using a bound on distillable entanglement , 2002 .

[28]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.

[29]  A. Shimony Degree of Entanglement a , 1995 .

[30]  J. Bergou,et al.  Optimal unambiguous discrimination of two subspaces as a case in mixed-state discrimination , 2006, quant-ph/0602093.

[31]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[32]  Somshubhro Bandyopadhyay,et al.  Local Distinguishability of Any Three Quantum States , 2006 .

[33]  Yuan Feng,et al.  Distinguishability of Quantum States by Separable Operations , 2007, IEEE Transactions on Information Theory.

[34]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[35]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.