Ionic nanopeapods: Next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube

Here we demonstrate enhanced proton conduction through polyelectrolyte matrices comprising nanopeapods of phosphotungstic acid (PWA) filled carbon nanotubes (CNTs). The ionic nanopeapods were found to provide rapid proton conduction pathways to design nanocomposite proton exchange membranes (PEMs) for high-performance fuel cell applications. Nanopeapod (0.5 wt%) incorporated Nafion-based PEMs offer improved proton conductivity, especially at elevated temperatures and low-humidity (0.202 S cm−1 compared with 0.132 S cm−1 for recast Nafion membrane at 90 °C), and about four times higher maximum power density at 40% R.H. and 120 °C (302 mW cm−2vs. 84 mW cm−2 for recast Nafion).

[1]  L. Dai,et al.  Carbon nanomaterials as metal-free catalysts in next generation fuel cells , 2012 .

[2]  I. Honma,et al.  Anhydrous protonic conductivity of a self-assembled acid-base composite material , 2004 .

[3]  J. Xin,et al.  Ionic peapods from carbon nanotubes and phosphotungstic acid , 2006 .

[4]  G. Palmese,et al.  Membranes with Oriented Polyelectrolyte Nanodomains , 2006 .

[5]  Mohammad Mahdi Hasani-Sadrabadi,et al.  Magnetically aligned nanodomains: application in high-performance ion conductive membranes. , 2014, ACS applied materials & interfaces.

[6]  P. Renaud,et al.  Polybenzimidazole‐decorated carbon nanotube: A high‐performance proton conductor , 2012 .

[7]  R. Kannan,et al.  Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes. , 2008, Angewandte Chemie.

[8]  Qiang Chen,et al.  Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. , 2008, Nature materials.

[9]  A. T. Johnson,et al.  Mapping the One-Dimensional Electronic States of Nanotube Peapod Structures , 2002, Science.

[10]  I. Honma,et al.  Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes. , 2006, The journal of physical chemistry. B.

[11]  S. Kitagawa,et al.  One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. , 2009, Nature materials.

[12]  M. M. Hasani-Sadrabadi,et al.  Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. , 2010, Chemical communications.

[13]  P. Renaud,et al.  Morphological tuning of polymeric nanoparticles via microfluidic platform for fuel cell applications. , 2012, Journal of the American Chemical Society.

[14]  U. Jeng,et al.  Morphology and properties of Nafion membranes prepared by solution casting , 2009 .

[15]  M. Soleimani,et al.  Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications , 2011 .

[16]  Mohammad Mahdi Hasani-Sadrabadi,et al.  Microfluidic synthesis of chitosan-based nanoparticles for fuel cell applications. , 2012, Chemical communications.

[17]  Kenichiro Koga,et al.  Formation of ordered ice nanotubes inside carbon nanotubes , 2001, Nature.

[18]  Nguyen Viet Long,et al.  The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells , 2013 .

[19]  M. Minutoli,et al.  Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application , 2000 .

[20]  Itaru Honma,et al.  Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane , 2001 .

[21]  Malcolm L. H. Green,et al.  A simple chemical method of opening and filling carbon nanotubes , 1994, Nature.

[22]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[23]  Xuemin Yan,et al.  Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells , 2009 .

[24]  Bin Dong,et al.  Super proton conductive high-purity nafion nanofibers. , 2010, Nano letters.

[25]  M. M. Hasani-Sadrabadi,et al.  Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications , 2010 .

[26]  Timothy J. Peckham,et al.  Structure‐Morphology‐Property Relationships of Non‐Perfluorinated Proton‐Conducting Membranes , 2010, Advanced materials.

[27]  Donald J. Leo,et al.  Beyond Nafion: Charged Macromolecules Tailored for Performance as Ionic Polymer Transducers , 2008 .

[28]  Hongwei Zhang,et al.  Advances in the high performance polymer electrolyte membranes for fuel cells. , 2012, Chemical Society reviews.

[29]  D. J. Mann,et al.  Water alignment and proton conduction inside carbon nanotubes. , 2003, Physical review letters.

[30]  K. Jacob,et al.  Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite , 2011 .

[31]  M. Soleimani,et al.  Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications , 2011 .

[32]  S. Nakazawa,et al.  An Extremely Low Methanol Crossover and Highly Durable Aromatic Pore‐Filling Electrolyte Membrane for Direct Methanol Fuel Cells , 2007 .

[33]  D. Jung,et al.  Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. , 2011, ACS nano.

[34]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[35]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .