Three-party quantum secret sharing against collective noise

In this paper, based on logical GHZ states and logical χ-states, we present four three-party quantum secret sharing protocols immune to the collective-dephasing noise and the collective-rotation noise, respectively. They make full use of the measurement correlation property of multi-particle entangled states and local unitary operations. Compared with existing three-party quantum secret sharing protocols against collective noise, our protocols are the most efficient. Furthermore, these protocols are congenitally free from the Trojan horse attacks.

[1]  Xiu-Bo Chen,et al.  Robust QKD-based private database queries based on alternative sequences of single-qubit measurements , 2017 .

[2]  Yuguang Yang,et al.  Economical five-party quantum state sharing of an arbitrary m-atom with five-atom cluster state in cavity QED , 2013 .

[3]  Haipeng Peng,et al.  Restricted (k, n)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states , 2017, Quantum Inf. Process..

[4]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[5]  Yong-Ming Li,et al.  A Generalized Information Theoretical Model for Quantum Secret Sharing , 2016, 1603.06032.

[6]  Hui Chen,et al.  Flexible quantum private queries based on quantum key distribution. , 2011, Optics express.

[7]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[8]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[9]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[10]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[11]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[12]  Sourav Chatterjee,et al.  Sequential quantum secret sharing in a noisy environment aided with weak measurements , 2014, 1402.2383.

[13]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[14]  Fei Gao,et al.  Postprocessing of the Oblivious Key in Quantum Private Query , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[16]  B. Sanders,et al.  Accessing quantum secrets via local operations and classical communication , 2013, 1305.0805.

[17]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[18]  Sourya Joyee De,et al.  A Proposal for Quantum Rational Secret Sharing , 2015, ArXiv.

[19]  Jian Li,et al.  Theoretically extensible quantum digital signature with starlike cluster states , 2016, Quantum Information Processing.

[20]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[21]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[22]  V. Karimipour,et al.  Quantum secret sharing and random hopping: Using single states instead of entanglement , 2015, 1506.02966.

[23]  Yu-Guang Yang,et al.  Fault-tolerant quantum secret sharing against collective noise , 2011 .

[24]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[25]  Gang Xu,et al.  Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability , 2019, Comput. Secur..

[26]  Guang-Can Guo,et al.  Quantum secret sharing without entanglement , 2002 .

[27]  Qiao-Yan Wen,et al.  Secure quantum private comparison , 2009 .

[28]  Chui-Ping Yang,et al.  Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , 2004, quant-ph/0402138.

[29]  Jian Li,et al.  Quantum private query with perfect user privacy against a joint-measurement attack , 2016 .

[30]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[31]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[32]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[33]  Xiubo Chen,et al.  Novel classical post-processing for quantum key distribution-based quantum private query , 2016, Quantum Inf. Process..

[34]  Su-Juan Qin,et al.  Dynamic quantum secret sharing , 2012 .

[35]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[36]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[37]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[38]  Yuguang Yang,et al.  Three-party quantum secret sharing against collective noise , 2010, Quantum Information Processing.

[39]  Zu-Rong Zhang,et al.  Quantum secret sharing based on quantum error-correcting codes , 2011 .

[40]  Yu-Guang Yang,et al.  Arbitrated quantum signature scheme based on cluster states , 2016, Quantum Inf. Process..

[41]  M. Żukowski,et al.  Secret sharing with a single d -level quantum system , 2015 .

[42]  Chun-Yan Li,et al.  Fault-Tolerate Three-Party Quantum Secret Sharing over a Collective-Noise Channel , 2011 .

[43]  Fei Gao,et al.  Practical quantum private query with better performance in resisting joint-measurement attack , 2016 .

[44]  Matthew G. Parker,et al.  Quantum secret sharing based on local distinguishability , 2014, ArXiv.

[45]  Zhu-Jun Zheng,et al.  The local indistinguishability of multipartite product states , 2016, Quantum Inf. Process..

[46]  Qiao-Yan Wen,et al.  Quantum private query: A new kind of practical quantum cryptographic protocol , 2019, Science China Physics, Mechanics & Astronomy.

[47]  Radu I. Campeanu,et al.  Triple-differential cross sections for the ionization of NH3 by positron impact , 2016 .

[48]  Peng Xu,et al.  Flexible protocol for quantum private query based on B92 protocol , 2014, Quantum Inf. Process..

[49]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[50]  Gustavo Rigolin,et al.  Generalized quantum-state sharing , 2006 .

[51]  Xiao Zheng,et al.  The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction , 2017, Quantum Inf. Process..

[52]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[53]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.