On the monotone sum of basic t-norms in the construction of parametric families of digital conjunctors for fuzzy systems with reconfigurable logic

A problem of hardware implementation of fuzzy rule-based systems with reconfigurable parametric families of operations is discussed. The methods of generation of parametric families of digital fuzzy conjunctors and t-norms by means of monotone sum and ordinal sum of basic t-norms are studied in the paper. The paper considers several methods of generation of such operations utilizing only the simplest operations, such as comparison, min, max, bounded sum and bounded difference, providing efficient hardware implementation of different reconfigurable parametric families of digital fuzzy conjunctors in one modular structure.

[1]  Ildar Z. Batyrshin,et al.  FPGA implementation of (p)-monotone sum of basic t-norms , 2010, International Conference on Fuzzy Systems.

[2]  Okyay Kaynak,et al.  Fuzzy modeling based on generalized conjunction operations , 2002, IEEE Trans. Fuzzy Syst..

[3]  Bernard De Baets,et al.  On the dominance relation between ordinal sums of conjunctors , 2006, Kybernetika.

[4]  Luis A. Villa Vargas,et al.  FPGA Implementation of Fuzzy Mamdani System with Parametric Conjunctions Generated by Monotone Sum of Basic t-Norms , 2011, Polibits.

[5]  Francisco Herrera,et al.  Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems: Research Articles , 2007 .

[6]  Steve Kilts Advanced FPGA design , 2007 .

[7]  Okyay Kaynak,et al.  Parametric classes of generalized conjunction and disjunction operations for fuzzy modeling , 1999, IEEE Trans. Fuzzy Syst..

[8]  John Yen,et al.  Industrial Applications of Fuzzy Logic and Intelligent Systems , 1995 .

[9]  Ildar Z. Batyrshin,et al.  On Generation of Digital Fuzzy Parametric Conjunctions , 2009, Towards Intelligent Engineering and Information Technology.

[10]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[11]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[12]  Radko Mesiar,et al.  Ordinal sums of aggregation operators , 2002 .

[13]  Sándor Jenei,et al.  How to construct left-continuous triangular norms--state of the art , 2004, Fuzzy Sets Syst..

[14]  Lluis Godo,et al.  MILORD: The architecture and the management of linguistically expressed uncertainty , 1989, Int. J. Intell. Syst..

[15]  Zvonko G. Vranesic,et al.  Fundamentals of Digital Logic with VHDL Design , 2008 .

[16]  Bogdan M. Wilamowski,et al.  Implementing a fuzzy system on a field programmable gate array , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[17]  János C. Fodor,et al.  Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..

[18]  Josep Puyol-Gruart,et al.  Handling Fuzzy Information in MILORD II , 1998 .

[19]  Ju Wang,et al.  Expressive fuzzy description logics over lattices , 2010, Knowl. Based Syst..

[20]  Ildar Z. Batyrshin,et al.  FPGA Implementation of Fuzzy System with Parametric Membership Functions and Parametric Conjunctions , 2010, MICAI.

[21]  Andres Upegui,et al.  A Dynamically-Reconfigurable FPGA Platform for Evolving Fuzzy Systems , 2005, IWANN.

[22]  Masaki Togai,et al.  Expert System on a Chip: An Engine for Real-Time Approximate Reasoning , 1986, IEEE Expert.

[23]  P.D. Koprinkova-Hristova,et al.  Fuzzy operations' parameters versus membership functions' parameters influence on fuzzy control systems properties , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[24]  Ildar Batyrshin,et al.  On generation and FPGA implementation of digital fuzzy parametric conjunctions , 2012 .

[25]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[26]  Selangor Darul Ehsan,et al.  FPGA-based Implementation of Digital Logic Design using Altera DE2 Board , 2009 .

[27]  Elsa Rubio,et al.  Parametric Type-2 Fuzzy Logic Systems , 2012 .

[28]  Gaspar Mayor,et al.  Additive Generators of Discrete Conjunctive Aggregation Operations , 2007, IEEE Transactions on Fuzzy Systems.

[29]  Abraham Kandel,et al.  Fuzzy hardware: architectures and applications , 1997 .

[30]  Zeshui Xu,et al.  Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm , 2012, Knowl. Based Syst..

[31]  F. Esteva,et al.  Defining and combining Multiple-valued Logics for Knowledge-based Systems , 1998 .

[32]  Fabrizio Durante,et al.  Semicopulas: characterizations and applicability , 2006, Kybernetika.

[33]  Bernard De Baets,et al.  Orthogonal Grid Constructions of Copulas , 2007, IEEE Transactions on Fuzzy Systems.

[34]  Iluminada Baturone,et al.  FPGA Implementation of Embedded Fuzzy Controllers for Robotic Applications , 2007, IEEE Transactions on Industrial Electronics.

[35]  Laijun Sun,et al.  Research on high-speed fuzzy reasoning with FPGA for fault diagnosis expert system , 2009, 2009 International Conference on Mechatronics and Automation.

[36]  Samir Palnitkar,et al.  Verilog HDL: a guide to digital design and synthesis , 1996 .

[37]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[38]  Steve Kilts Control System Components , 2008 .

[39]  Francisco Herrera,et al.  Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems , 2007, Int. J. Intell. Syst..

[40]  S. Neeli,et al.  Fuzzy System with Increased Accuracy Suitable for FPGA implementaion , 2008, 2008 International Conference on Intelligent Engineering Systems.

[41]  Shubhajit Roy Chowdhury,et al.  DEVELOPMENT OF AN FPGA BASED SMART DIAGNOSTIC SYSTEM FOR SPIROMETRIC DATA PROCESSING APPLICATIONS , 2008 .

[42]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[43]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.