Mechanical and wear properties of Mo5Si3–Mo3Si–Al2O3 composites

[1]  Hirotaka Matsunoshita,et al.  Orientation relationships, interface structures, and mechanical properties of directionally solidified MoSi2/Mo5Si3/Mo5Si3C composites , 2016 .

[2]  C. Estournès,et al.  Thermal cycling and reactivity of a MoSi2/ZrO2 composite designed for self-healing thermal barrier coatings , 2016 .

[3]  X. Shao,et al.  Effect of Al2O3 and Cu on the microstructure and oxidation properties of Mo5Si3 composite , 2015 .

[4]  W. Ching,et al.  In search of zero thermal expansion anisotropy in Mo5Si3 by strategic alloying , 2015 .

[5]  P. K. Limaye,et al.  Friction and wear properties of hot pressed (Ti,Cr)B2 + MoSi2 composite in sliding against WC ball , 2014 .

[6]  X. Shao,et al.  Microstructure, mechanical properties and oxidation resistance of Mo5Si3–Al2O3 composite , 2014 .

[7]  E. Shafirovich,et al.  Mechanically activated combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications , 2014 .

[8]  I. Gnesin,et al.  The interaction of carbon with Mo5Si3 and W5Si3 silicides. Nowotny phase synthesis , 2013 .

[9]  Xinghong Zhang,et al.  Effects of solids loading on microstructure and mechanical properties of HfB2–20 vol.% MoSi2 ultra high temperature ceramic composites through aqueous gelcasting route , 2013 .

[10]  Jiang Xu,et al.  Novel high damage-tolerant, wear resistant MoSi2-based nanocomposite coatings , 2013 .

[11]  M. Kadir,et al.  Synthesis and kinetic study of (Mo,W)Si2–WSi2 nanocomposite by mechanical alloying , 2012 .

[12]  S. Heshmati-Manesh,et al.  Preparation of MoSi2–Al2O3 nano-composite via MASHS route , 2012 .

[13]  P. Munroe,et al.  Effect of Cr alloying on friction and wear of sputter-deposited nanocrystalline (MoxCr1−x)5Si3 films , 2011 .

[14]  A. L. Ortiz,et al.  Effect of MoSi2 content on the lubricated sliding-wear resistance of ZrC–MoSi2 composites , 2011 .

[15]  D. Sciti,et al.  Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum , 2010 .

[16]  D. Kondepudi,et al.  Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites: Multilayer modeling and control of the microstructure , 2010 .

[17]  J. Kuebler,et al.  MoSi2–Si3N4 composites: Influence of starting materials and fabrication route on electrical and mechanical properties , 2009 .

[18]  Houan Zhang,et al.  Fabrication and wear characteristics of MoSi2 matrix composites reinforced by La2O3 and Mo5Si3 , 2008 .

[19]  J. Colin,et al.  Microstructure and mechanical properties of molybdenum silicides with Al additions , 2007 .

[20]  Ping Chen,et al.  Dry sliding wear behaviors of La2O3–WSi2–MoSi2 composite against alloy steel , 2006 .

[21]  A. K. Suri,et al.  Tribological properties of TiB2 and TiB2–MoSi2 ceramic composites , 2006 .

[22]  T. Iizuka,et al.  Tribological behavior of Mo5Si3 particle reinforced Si3N4 matrix composites , 2005 .

[23]  E. Ström,et al.  Effect of site occupation on thermal and mechanical properties of ternary alloyed Mo5Si3 , 2005 .

[24]  Jinsheng Pan,et al.  Wear behavior of TiC–MoSi2 composites , 2003 .

[25]  Q. Xue,et al.  Study of wear resistant MoSi2–SiC composites fabricated by self-propagating high temperature synthesis casting , 2003 .

[26]  S. Ramasesha,et al.  Role of in situ generated tribofilm on the tribological characteristics of monolith and TiB2 reinforced MoSi2 intermetallic , 2002 .

[27]  S. Kim,et al.  Wear and Wear Transition in Silicon Carbide Ceramics during Sliding , 1996 .

[28]  S. Kim,et al.  Wear and Wear Transition Mechanism in Silicon Carbide during Sliding , 1995 .

[29]  B. Lawn,et al.  Model for Toughness Curves in Two‐Phase Ceramics: I, Basic Fracture Mechanics , 1993 .

[30]  B. Yen,et al.  Synthesis and formation mechanisms of molybdenum silicides by mechanical alloying. , 1996 .