Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress

Colloidal quantum dots (CQDs) are solution-processed semiconductors of interest in low-cost photovoltaics. Tuning of the bandgap of CQD films via the quantum size effect enables customization of solar cells' absorption profile to match the sun's broad visible- and infrared-containing spectrum reaching the earth. Here we review recent progress in the realization of low-cost, efficient solar cells based on CQDs. We focus in particular on CQD materials and approaches that provide both infrared and visible-wavelength solar power conversion CQD photovoltaics now exceed 5% solar power conversion efficiency, achieved by the introduction of a new architecture, the depleted-heterojunction CQD solar cell, that jointly maximizes current, voltage, and fill factor. CQD solar cells have also seen major progress in materials processing for stability, recently achieving extended operating lifetimes in an air ambient. We summarize progress both in device operation and also in gaining new insights into materials properties and processing - including new electrical contact materials and deposition techniques, as well as CQD synthesis, surface treatments, film-forming technologies - that underpin these rapid advances.

[1]  E. Weiss,et al.  The Effect of a Common Purification Procedure on the Chemical Composition of the Surfaces of CdSe Quantum Dots Synthesized with Trioctylphosphine Oxide , 2010 .

[2]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[3]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[4]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[5]  Al-Amin Dhirani,et al.  Charge transport in nanoparticle assemblies. , 2008, Chemical reviews.

[6]  Larissa Levina,et al.  Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. , 2008, ACS nano.

[7]  Fernando L. Teixeira,et al.  Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles , 2010 .

[8]  S. Tsang,et al.  Highly efficient cross-linked PbS nanocrystal/C60 hybrid heterojunction photovoltaic cell , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[9]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[10]  Shinji Aramaki,et al.  Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells , 2009 .

[11]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[12]  James R Chelikowsky,et al.  Self-purification in semiconductor nanocrystals. , 2006, Physical review letters.

[13]  L. Feitknecht,et al.  Hole drift mobility in μc-Si:H , 2001 .

[14]  Edward H. Sargent,et al.  Schottky barriers to colloidal quantum dot films , 2007 .

[15]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[16]  Stefan Myrskog,et al.  Heavy-metal-free solution-processed nanoparticle-based photodetectors: doping of intrinsic vacancies enables engineering of sensitivity and speed. , 2009, ACS nano.

[17]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[18]  F. V. van Veggel,et al.  Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[19]  H. Rubinsztein-Dunlop,et al.  Inorganic surface passivation of PbS nanocrystals resulting in strong photoluminescent emission , 2003 .

[20]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[21]  Jiang Tang,et al.  Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination , 2010, Advanced materials.

[22]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[23]  Marija Drndic,et al.  Coulomb blockade and hopping conduction in PbSe quantum dots. , 2005, Physical review letters.

[24]  A. Q. Le Quang,et al.  Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications. , 2006, The journal of physical chemistry. B.

[25]  Gregory D. Scholes,et al.  IV–VI Nanocrystal–polymer solar cells , 2008 .

[26]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[27]  Patrick S Grant,et al.  SnS/PbS nanocrystal heterojunction photovoltaics , 2010, Nanotechnology.

[28]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[29]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[30]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[31]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[32]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[33]  Boris I Shklovskii,et al.  Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold , 1976 .

[34]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[35]  Gerald Siefer,et al.  Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight , 2009 .

[36]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[37]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[38]  Tatsuya Okubo,et al.  Overview of Nanoparticle Array Formation by Wet Coating , 2003 .

[39]  Kai Zhu,et al.  Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. , 2006, The journal of physical chemistry. B.

[40]  Maya Brumer,et al.  PbSe/PbS and PbSe/PbSexS1–x Core/Shell Nanocrystals , 2005 .

[41]  Edward H. Sargent,et al.  Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids , 2008 .

[42]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[43]  Christopher B. Murray,et al.  Synthesis of Colloidal PbSe/PbS Core−Shell Nanowires and PbS/Au Nanowire−Nanocrystal Heterostructures , 2007 .

[44]  Norman R. Heckenberg,et al.  Investigation of the role of cadmium sulfide in the surface passivation of lead sulfide quantum dots , 2004 .

[45]  Matthew C. Beard,et al.  Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. , 2008, Nano letters.

[46]  Byung-Ryool Hyun,et al.  PbSe nanocrystal excitonic solar cells. , 2009, Nano letters.

[47]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[48]  Vladimir Bulovic,et al.  Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices , 2003 .

[49]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[50]  P. Prasad,et al.  Self Passivating Hybrid (Organic/Inorganic) Tandem Solar Cell , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[51]  Matt Law,et al.  Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. , 2010, Nano letters.

[52]  A. Jen,et al.  Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. , 2006, Nano letters.

[53]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[54]  G. Jabbour,et al.  Inkjet Printed RGB Quantum Dot-Hybrid LED , 2010, Journal of Display Technology.

[55]  Risto Myllylä,et al.  Inkjet printing of light emitting quantum dots , 2009 .

[56]  Helmut Neugebauer,et al.  Hybrid Solar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes , 2006 .

[57]  Chee Wei Wong,et al.  Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer. , 2008, Nano letters.

[58]  F. Wise,et al.  Electronic structure of Pb Se ∕ Pb S core-shell quantum dots , 2007 .

[59]  Matthew C Beard,et al.  Time-resolved photoconductivity of PbSe nanocrystal arrays. , 2006, The journal of physical chemistry. B.

[60]  K. K. Rao,et al.  Identification of surface states in PbS quantum dots by temperature dependent photoluminescence , 2008 .

[61]  J. H. Blokland,et al.  Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing , 2009, Nanotechnology.

[62]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[63]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[64]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[65]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[66]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[67]  Donal D. C. Bradley,et al.  Nondispersive hole transport in an electroluminescent polyfluorene , 1998 .

[68]  Edward H. Sargent,et al.  Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. , 2008, Nano letters.

[69]  Lukasz Brzozowski,et al.  Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.

[70]  Jeffrey J Urban,et al.  Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. , 2010, Nano letters.

[71]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[72]  N. Arnold,et al.  Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells , 2003 .

[73]  M. Beard,et al.  Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. , 2009, Nano letters.

[74]  Yu Zhang,et al.  Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals. , 2009, ACS nano.

[75]  G. Konstantatos,et al.  PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain , 2007 .

[76]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[77]  Nasser N Peyghambarian,et al.  Fabrication of bulk heterojunction plastic solar cells by screen printing , 2001 .

[78]  Zeger Hens,et al.  Surface chemistry of colloidal PbSe nanocrystals. , 2008, Journal of the American Chemical Society.

[79]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[80]  Dmitri V Talapin,et al.  Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films. , 2007, Nature materials.