Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization

In this communication we report on electrical properties of nonintentionally doped (nid) type II InAs/GaSb superlattice grown by molecular beam epitaxy. We present a simple technological process which, thanks to the suppression of substrate, allows direct Hall measurement on superlattice structures grown on conductive GaSb substrate. Two samples were used to characterize the transport: one grown on a semi-insulating GaAs substrate and another grown on n-GaSb substrate where a etch stop layer was inserted to remove the conductive substrate. Mobilities and carrier concentrations have been measured as a function of temperature (77–300 K), and compared with capacitance-voltage characteristic at 80 K of a photodiode comprising a similar nid superlattice.

[1]  Manijeh Razeghi,et al.  Dark current suppression in type II InAs∕GaSb superlattice long wavelength infrared photodiodes with M-structure barrier , 2007 .

[2]  Ron Kaspi,et al.  As-soak control of the InAs-on-GaSb interface , 2001 .

[3]  Manijeh Razeghi,et al.  Background Limited Performance of Long Wavelength Infrared Focal Plane Arrays Fabricated From M-Structure InAs–GaSb Superlattices , 2009 .

[4]  J. B. Rodriguez,et al.  Characterization of carriers in GaSb∕InAs superlattice grown on conductive GaSb substrate , 2008 .

[5]  Philippe Christol,et al.  Uncooled InAs/GaSb superlattice photovoltaic detector operating in the mid-wavelength infrared range , 2005 .

[6]  William C. Mitchel,et al.  Carrier mobility as a function of carrier density in type-II InAs/GaSb superlattices , 2009 .

[7]  Frank Fuchs,et al.  Control of the residual doping of InAs/(GaIn)Sb infrared superlattices , 2000 .

[8]  Yajun Wei,et al.  Capacitance-voltage investigation of high-purity InAs∕GaSb superlattice photodiodes , 2006 .

[9]  M. L. Tilton,et al.  Comparing pseudopotential predictions for InAs/GaSb superlattices , 2002 .

[10]  Piotr Martyniuk,et al.  InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2006 .

[11]  W. J. Moore,et al.  Surface Reconstruction Phase Diagrams for InAs, AlSb, and GaSb , 2000 .

[12]  Markus-Christian Amann,et al.  Selective and non-selective wet-chemical etchants for GaSb-based materials , 2004 .

[13]  William C. Mitchel,et al.  Study of residual background carriers in midinfrared InAs∕GaSb superlattices for uncooled detector operation , 2008 .

[14]  Elena Plis,et al.  Midwave infrared type-II InAs∕GaSb superlattice detectors with mixed interfaces , 2006 .

[15]  William C. Mitchel,et al.  Growth optimization for low residual carriers in undoped midinfrared InAs/GaSb superlattices , 2008 .

[16]  J. Wendler,et al.  256×256 focal plane array midwavelength infrared camera based on InAs/GaSb short-period superlattices , 2005 .

[17]  H. S. Kim,et al.  nBn structure based on InAs /GaSb type-II strained layer superlattices , 2007 .

[18]  Yajun Wei,et al.  Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering , 2004 .

[19]  William C. Mitchel,et al.  InAs/GaSb type-II superlattices for high performance mid-infrared detectors , 2005 .

[20]  Philippe Christol,et al.  Characterization of midwave infrared InAs/GaSb superlattice photodiode , 2009 .

[21]  Jerry R. Meyer,et al.  Interface roughness scattering in semiconducting and semimetallic InAs‐Ga1−xInxSb superlattices , 1993 .

[22]  Manijeh Razeghi,et al.  High differential resistance type-II InAs∕GaSb superlattice photodiodes for the long-wavelength infrared , 2006 .

[23]  Gail J. Brown,et al.  Demonstration of interface-scattering-limited electron mobilities in InAs∕GaSb superlattices , 2007 .