Molecular Genetics of Heterokaryon Incompatibility in Filamentous Ascomycetes

SUMMARY Filamentous fungi spontaneously undergo vegetative cell fusion events within but also between individuals. These cell fusions (anastomoses) lead to cytoplasmic mixing and to the formation of vegetative heterokaryons (i.e., cells containing different nuclear types). The viability of these heterokaryons is genetically controlled by specific loci termed het loci (for heterokaryon incompatibility). Heterokaryotic cells formed between individuals of unlike het genotypes undergo a characteristic cell death reaction or else are severely inhibited in their growth. The biological significance of this phenomenon remains a puzzle. Heterokaryon incompatibility genes have been proposed to represent a vegetative self/nonself recognition system preventing heterokaryon formation between unlike individuals to limit horizontal transfer of cytoplasmic infectious elements. Molecular characterization of het genes and of genes participating in the incompatibility reaction has been achieved for two ascomycetes, Neurospora crassa and Podospora anserina. These analyses have shown that het genes are diverse in sequence and do not belong to a gene family and that at least some of them perform cellular functions in addition to their role in incompatibility. Divergence between the different allelic forms of a het gene is generally extensive, but single-amino-acid differences can be sufficient to trigger incompatibility. In some instances het gene evolution appears to be driven by positive selection, which suggests that the het genes indeed represent recognition systems. However, work on nonallelic incompatibility systems in P. anserina suggests that incompatibility might represent an accidental activation of a cellular system controlling adaptation to starvation.

[1]  H. Boucherie,et al.  Protoplasmic Incompatibility in PODOSPORA ANSERINA: a Possible Function for Incompatibility Genes. , 1980, Genetics.

[2]  J. Klein,et al.  MHC polymorphism pre-dating speciation , 1988, Nature.

[3]  T. Sasaki,et al.  Glycolipid transfer protein in animal cells. , 1990, Sub-cellular biochemistry.

[4]  J. Klein,et al.  Persistence of neutral polymorphisms in Lake Victoria cichlid fish. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. V. Ferreira,et al.  Characterization of mat A-2, mat A-3 and deltamatA mating-type mutants of Neurospora crassa. , 1998, Genetics.

[6]  C. Barreau,et al.  Regulation of gene expression during the vegetative incompatibility reaction in Podospora anserina. Characterization of three induced genes. , 1998, Genetics.

[7]  Craig B. Thompson,et al.  Hierarchical Control of Lymphocyte Survival , 1996, Science.

[8]  R. Metzenberg,et al.  Escape from het-6 incompatibility in Neurospora crassa partial diploids involves preferential deletion within the ectopic segment. , 1996, Genetics.

[9]  B. Turcq,et al.  Reactivity in vegetative incompatibility of the HE T-E protein of the fungus Podospora anserina is dependent on GTP-binding activity and a WD40 repeated domain , 1997, Molecular and General Genetics MGG.

[10]  C Yanofsky,et al.  Neurospora crassa a mating-type region. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[11]  C. Yamashiro,et al.  Effects of the tol mutation on allelic interactions at het loci in Neurospora crassa. , 1997, Genome.

[12]  B. Turcq,et al.  Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  N. L. Glass,et al.  Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. , 1996, Molecular & general genetics : MGG.

[14]  M. Picard,et al.  Mating types and sexual development in filamentous ascomycetes , 1997, Microbiology and molecular biology reviews : MMBR.

[15]  C. Caten Vegetative incompatibility and cytoplasmic infection in fungi. , 1972, Journal of general microbiology.

[16]  R. Hoekstra,et al.  Heterokaryon incompatibility blocks virus transfer among natural isolates of black Aspergilli , 1997, Current Genetics.

[17]  C. Staben,et al.  Functional analyses of the Neurospora crassa MT a-1 mating type polypeptide. , 1994, Genetics.

[18]  O. Mylyk Heterokaryon incompatibility genes in Neurospora crassa detected using duplication-producing chromosome rearrangements. , 1975, Genetics.

[19]  Sven J. Saupe Contribution à l'étude du système d'incompatibilité végétative het-c/het-e du champignon filamenteux Podospora anserina , 1993 .

[20]  C. Barreau,et al.  The mod-A suppressor of nonallelic heterokaryon incompatibility in Podospora anserina encodes a proline-rich polypeptide involved in female organ formation. , 1998, Genetics.

[21]  B. Turcq,et al.  A gene responsible for vegetative incompatibility in the fungus Podospora anserina encodes a protein with a GTP-binding motif and G beta homologous domain. , 1995, Gene.

[22]  D. Jacobson,et al.  Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. , 2000, Genetics.

[23]  N. L. Glass,et al.  Isolation of Neurospora crassa A mating type mutants by repeat induced point (RIP) mutation. , 1992, Genetics.

[24]  O. Mylyk,et al.  Heteromorphism for Heterokaryon Incompatibility Genes in Natural Populations of NEUROSPORA CRASSA. , 1976, Genetics.

[25]  R. Wickner,et al.  [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. , 1994, Science.

[26]  P. Durrens,et al.  Temporal Action of Mutations Inhibiting the Accomplishment of Quiescence or Disrupting Development in the Fungus PODOSPORA ANSERINA. , 1985, Genetics.

[27]  E. W. Jones,et al.  Protease B of Saccharomyces cerevisiae: isolation and regulation of the PRB1 structural gene. , 1987, Genetics.

[28]  A. Griffiths,et al.  The molecular nature of mutations in the , 1996 .

[29]  H. Boucherie,et al.  Protoplasmic incompatibility and self-lysis in Podospora anserina: enzyme activities associated with cell destruction , 1978 .

[30]  Y. Chernoff,et al.  Evidence for a Protein Mutator in Yeast: Role of the Hsp70-Related Chaperone Ssb in Formation, Stability, and Toxicity of the [PSI] Prion , 1999, Molecular and Cellular Biology.

[31]  R. Kolesnick,et al.  Signal transduction of stress via ceramide. , 1998, The Biochemical journal.

[32]  C. Deleu,et al.  A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. , 1993, Genetics.

[33]  S. Saupe,et al.  Characterization of hch, the Podospora anserina homolog of the het-c heterokaryon incompatibility gene of Neurospora crassa , 2000, Current Genetics.

[34]  A. Griffiths NULL MUTANTS OF THE A AND a MATING TYPE ALLELES OF NEUROSPORA CRASSA , 1982 .

[35]  M. Tuite,et al.  Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion‐mediated mechanism , 1999, The EMBO journal.

[36]  A. Clark,et al.  Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  V. Coustou,et al.  Mutational analysis of the [Het-s] prion analog of Podospora anserina. A short N-terminal peptide allows prion propagation. , 1999, Genetics.

[38]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[39]  G. W. Beadle,et al.  Heterocaryosis in Neurospora Crassa. , 1944, Genetics.

[40]  V. Coustou,et al.  The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Hartl,et al.  Adaptive significance of vegetative incompatibility in Neurospora crassa. , 1975, Genetics.

[42]  J. Kinsey Tad, a LINE-like transposable element of Neurospora, can transpose between nuclei in heterokaryons. , 1990, Genetics.

[43]  B. Roberts,et al.  Prions in Saccharomyces and Podosporaspp.: Protein-Based Inheritance , 1999, Microbiology and Molecular Biology Reviews.

[44]  B. Turcq,et al.  A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. , 1997, Genetics.

[45]  D. Jacobson,et al.  Control of mating type heterokaryon incompatibility by the tol gene in Neurospora crassa and N. tetrasperma. , 1992, Genome.

[46]  B. Turcq,et al.  Vegetative incompatibility in filamentous fungi: het genes begin to talk. , 1994, Trends in genetics : TIG.

[47]  W. Swanson,et al.  Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. , 1998, Science.

[48]  L. Garnjobst GENETIC CONTROL OF HETEROCARYOSIS IN NEUROSPORA CRASSA , 1953 .

[49]  T. Brawner,et al.  Genetic control of nuclear selection in Neurospora heterokaryons. , 1961, Genetics.

[50]  N. Takahata Neutral theory of molecular evolution. , 1996, Current opinion in genetics & development.

[51]  P. Cortesi,et al.  Analysis of population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Klomparens,et al.  Microscopic and Ultrastructural Examination of Vegetative Incompatibility in Partial Diploids Heterozygous at het Loci in Neurospora crassa , 1998, Fungal genetics and biology : FG & B.

[53]  D. Newmeyer A suppressor of the heterokaryon-incompatibility associated with mating type in Neurospora crassa. , 1970, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie.

[54]  A. Griffiths,et al.  Polymorphism of het -genes prevents resource plundering in Neurospora crassa , 1998 .

[55]  Jean Bernet Mode d'action des gènes de "barrage" et relation entre l'incompatibilité cellulaire et l'incompatibilité sexuelle chez "Podospora anserina" , 1965 .

[56]  R. Collins,et al.  Independent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora , 1990, Nature.

[57]  M. L. Smith,et al.  The product of the het-C heterokaryon incompatibility gene of Neurospora crassa has characteristics of a glycine-rich cell wall protein. , 1996, Genetics.

[58]  S. Saupe,et al.  Evidence for balancing selection operating at the het-c heterokaryon incompatibility locus in a group of filamentous fungi. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  N. L. Glass,et al.  Mating type and vegetative incompatibility in filamentous ascomycetes. , 1992, Annual review of phytopathology.

[60]  R. Metzenberg,et al.  Behaviour of Neurospora tetrasperma mating-type genes introgressed into N. crassa. , 1973, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie.

[61]  M. Paoletti,et al.  Characterization of a gene from the filamentous fungus Podospora anserina encoding an aspartyl protease induced upon carbon starvation. , 1998, Gene.

[62]  Temple F. Smith,et al.  The WD repeat: a common architecture for diverse functions. , 1999, Trends in biochemical sciences.

[63]  A. Griffiths,et al.  Mutations of the a Mating-Type Gene in NEUROSPORA CRASSA. , 1978, Genetics.

[64]  B. Turcq,et al.  MOD-D, a Galpha subunit of the fungus Podospora anserina, is involved in both regulation of development and vegetative incompatibility. , 1999, Genetics.

[65]  P. Cortesi,et al.  Genetics of Vegetative Incompatibility inCryphonectria parasitica , 1998, Applied and Environmental Microbiology.

[66]  Jerry A. Coyne,et al.  Genetics and speciation , 1992, Nature.

[67]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[68]  N. L. Glass,et al.  Molecular characterization of tol, a mediator of mating-type-associated vegetative incompatibility in Neurospora crassa. , 1999, Genetics.

[69]  D. D. Perkins The use of duplication-generating rearrangements for studying heterokaryon incompatibility genes in Neurospora. , 1975, Genetics.

[70]  S. Anagnostakis,et al.  Biological Control of Chestnut Blight , 1982, Science.

[71]  F. Buxton,et al.  Cloning and characterisation of pepC, a gene encoding a serine protease from Aspergillus niger. , 1993, Gene.

[72]  J. Croft,et al.  Analysis of heterokaryon incompatibility between heterokaryon-compatibility (h-c) groups R and GL provides evidence that at least eight het loci control somatic incompatibility in Aspergillus nidulans. , 1993, Journal of general microbiology.

[73]  J. Leslie Fungal vegetative compatibility. , 1993, Annual review of phytopathology.

[74]  C. Yanofsky,et al.  DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. , 1988, Science.

[75]  S. Anagnostakis CONVERSION TO CURATIVE MORPHOLOGY IN ENDOTHIA PARASITICA AND ITS RESTRICTION BY VEGETATIVE COMPATIBILITY , 1983 .

[76]  J. Bernet In Podospora anserina, protoplasmic incompatibility genes are involved in cell death control via multiple gene interactions , 1992, Heredity.

[77]  J. Wilson,et al.  HETEROCARYOSIS AND PROTOPLASMIC INCOMPATIBILITY IN NEUROSPORA CRASSA. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[78]  T. Ohta,et al.  Population Biology of Antigen Presentation by MHC Class I Molecules , 1996, Science.

[79]  N. L. Glass,et al.  Allelic specificity at the het-c heterokaryon incompatibility locus of Neurospora crassa is determined by a highly variable domain. , 1997, Genetics.

[80]  A. Abe Primary structure of glycolipid transfer protein from pig brain. , 1990, Journal of Biological Chemistry.

[81]  D. D. Perkins Behavior of Neurospora sitophila mating-type alleles in heterozygous duplications after introgression into Neurospora crassa , 1977 .

[82]  B. Turcq,et al.  repa, a repetitive and dispersed DNA sequence of the filamentous fungus Podospora anserina. , 1990, Nucleic acids research.

[83]  D. Jacobson,et al.  An osmotic-remedial, temperature-sensitive mutation in the allosteric activity site of ribonucleotide reductase in Neurospora crassa , 2000, Molecular and General Genetics MGG.