Automatic delineation algorithm for site-specific management zones based on satellite remote sensing data

In light of the increasing demand for food production, climate change challenges for agriculture, and economic pressure, precision farming is an ever-growing market. The development and distribution of remote sensing applications is also growing. The availability of extensive spatial and temporal data—enhanced by satellite remote sensing and open-source policies—provides an attractive opportunity to collect, analyze and use agricultural data at the farm scale and beyond. The division of individual fields into zones of differing yield potential (management zones (MZ)) is the basis of most offline and map-overlay precision farming applications. In the process of delineation, manual labor is often required for the acquisition of suitable images and additional information on crop type. The authors therefore developed an automatic segmentation algorithm using multi-spectral satellite data, which is able to map stable crop growing patterns, reflecting areas of relative yield expectations within a field. The algorithm, using RapidEye data, is a quick and probably low-cost opportunity to divide agricultural fields into MZ, especially when yield data is insufficient or non-existent. With the increasing availability of satellite images, this method can address numerous users in agriculture and lower the threshold of implementing precision farming practices by providing a preliminary spatial field assessment.

[1]  Atsushi Kume,et al.  Remote sensing of vegetation , 2014 .

[2]  Wolfram Mauser,et al.  Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe , 2015, Remote. Sens..

[3]  Clyde W. Fraisse,et al.  Management Zone Analyst (MZA) , 2004, Agronomy Journal.

[4]  Brian McConkey,et al.  Effectiveness of using vegetation index to delineate zones of different soil and crop grain production characteristics , 2005 .

[5]  T. C. Haas,et al.  Kriging and automated variogram modeling within a moving window , 1990 .

[6]  Birgit Kleinschmit,et al.  Robust Automated Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for Multi-Temporal Landslide Detection , 2014, Remote. Sens..

[7]  Kexun He,et al.  [Effects of water stress on red-edge parameters and yield in wheat cropping]. , 2013, Guang pu xue yu guang pu fen xi = Guang pu.

[8]  Clement Atzberger,et al.  Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs , 2013, Remote. Sens..

[9]  R. Gebbers,et al.  Electrical conductivity mapping for precision farming , 2009 .

[10]  Anatoly A. Gitelson,et al.  MODIS-based corn grain yield estimation model incorporating crop phenology information , 2013 .

[11]  C. Fraisse,et al.  Management Zone Analyst ( MZA ) : Software for Subfield Management Zone Delineation , 2003 .

[12]  Soizik Laguette,et al.  Remote sensing applications for precision agriculture: A learning community approach , 2003 .

[13]  W. E. Larson,et al.  Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. , 2000 .

[14]  W. G. Rees Physical Principles of Remote Sensing: References , 2001 .

[15]  David W. Franzen,et al.  Evaluation of Soil Survey Scale for Zone Development of Site-Specific Nitrogen Management , 2002 .

[16]  D. G. Westfall,et al.  Comparison of Site-Specific Management Zones: Soil-Color-Based and Yield-Based , 2006 .

[17]  R. V. Rossel,et al.  Spatial prediction for precision agriculture , 1996 .

[18]  W. Rees Physical Principles of Remote Sensing , 1990 .

[19]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[20]  Sergio Ruggieri,et al.  An approach for delineating homogeneous zones by using multi-sensor data , 2013 .

[21]  Brigitte Charnomordic,et al.  A segmentation algorithm for the delineation of agricultural management zones , 2010 .

[22]  S. Idso,et al.  Estimation of grain yields by remote sensing of crop senescence rates. , 1980 .

[23]  Qiang Fu,et al.  Delineating soil nutrient management zones based on fuzzy clustering optimized by PSO , 2010, Math. Comput. Model..

[24]  R. Richter,et al.  Atmospheric / Topographic Correction for Satellite Imagery ( ATCOR-2 / 3 , Version 9 . 1 . 1 , February 2017 ) Theoretical Background Document , 2017 .

[25]  R. Lark,et al.  Classification as a first step in the interpretation of temporal and spatial variation of crop yield , 1997 .

[26]  Ofer Levi,et al.  Combining spectral and spatial information from aerial hyperspectral images for delineating homogenous management zones , 2013 .

[27]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[28]  N. R. Kitchena,et al.  Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity , 2005 .

[29]  R. Webster,et al.  Statistical Methods in Soil and Land Resource Survey. , 1990 .

[30]  J. Peñuelas,et al.  Remote sensing of biomass and yield of winter wheat under different nitrogen supplies , 2000 .

[31]  A M Hurd-Karrer,et al.  THE WATER CONTENT OF WHEAT LEAVES AT FLOWERING TIME. , 1929, Plant physiology.

[32]  R. A. MacMillan,et al.  A Landform Segmentation Model for Precision Farming , 2015 .

[33]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[34]  John Tulip,et al.  The RapidEye mission design , 2005 .

[35]  Achim Dobermann,et al.  Screening Yield Monitor Data Improves Grain Yield Maps , 2004 .

[36]  Wenjiang Huang,et al.  The delineation of agricultural management zones with high resolution remotely sensed data , 2009, Precision Agriculture.

[37]  L. Tian,et al.  A review of remote sensing methods for biomass feedstock production. , 2011 .

[38]  A. Cambouris,et al.  Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties , 2006, American Journal of Potato Research.

[39]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[40]  Y. Ge,et al.  Remote sensing of soil properties in precision agriculture: A review , 2006 .

[41]  F. Baret,et al.  Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. , 2006, Journal of experimental botany.

[42]  James S. Schepers,et al.  Appropriateness of Management Zones for Characterizing Spatial Variability of Soil Properties and Irrigated Corn Yields across Years , 2004, Agronomy Journal.

[43]  M. F. Baumgardner,et al.  Delineation of Soil Variability Using Geostatistics and Fuzzy Clustering Analyses of Hyperspectral Data , 1999 .

[44]  H. Gausman,et al.  Reflectance of leaf components , 1977 .

[45]  Hideki Kobayashi,et al.  Remote Sensing of Vegetation , 2019, Ecological Studies.

[46]  Prasad S. Thenkabail,et al.  Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images , 2003 .

[47]  R. M. Lark,et al.  Forming Spatially Coherent Regions by Classification of Multi-Variate Data: An Example from the Analysis of Maps of Crop Yield , 1998, Int. J. Geogr. Inf. Sci..

[48]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[49]  B. S. Blackmore,et al.  Yield Mapping; Errors and Algorithms , 2015 .

[50]  Gary E. Varvel,et al.  Use of Remote-Sensing Imagery to Estimate Corn Grain Yield , 2001 .

[51]  A. M. Mouazen,et al.  Data fusion techniques for delineation of site-specific management zones in a field in UK , 2015, Precision Agriculture.

[52]  Thomas A. Doerge,et al.  Yield Map Interpretation , 1999 .

[53]  C. Daughtry,et al.  Remote- and Ground-Based Sensor Techniques to Map Soil Properties , 2003 .

[54]  A. B. McBratney,et al.  Identifying Potential Within-Field Management Zones from Cotton-Yield Estimates , 2002, Precision Agriculture.

[55]  S. Orlandini,et al.  Durum wheat in-field monitoring and early-yield prediction: assessment of potential use of high resolution satellite imagery in a hilly area of Tuscany, Central Italy , 2013, The Journal of Agricultural Science.

[56]  J. J. Stoorvogel,et al.  A Methodology to Define Management Units in Support of an Integrated, Model‐Based Approach to Precision Agriculture , 1999 .

[57]  Saskia Foerster,et al.  Crop type mapping using spectral-temporal profiles and phenological information , 2012 .

[58]  A. J. Stern,et al.  Crop Yield Assessment from Remote Sensing , 2003 .

[59]  D. Lobell,et al.  A scalable satellite-based crop yield mapper , 2015 .

[60]  S. Ustin Remote sensing for natural resource management and environmental monitoring , 2004 .

[61]  Raimondo Schettini,et al.  A segmentation algorithm for color images , 1993, Pattern Recognit. Lett..

[62]  M. S. Bartlett,et al.  The Effect of Non-Normality on the t Distribution , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[63]  H. W. Gausman Photomicrographic Record of Light Reflected at 850 Nanometers by Cellular Constituents of Zebrina Leaf Epidermis1 , 1973 .

[64]  Su Li,et al.  Regional yield prediction for winter wheat based on crop biomass estimation using multi-source data , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[65]  Peng Gao,et al.  Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland , 2014 .

[66]  Sibylle Itzerott,et al.  CROP CLASSIFICATION BASED ON SPECTRAL STANDARD CURVES , 2006 .