Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy.

Infectious diseases caused by the human immunodeficiency virus (HIV) remain the leading killers of human beings worldwide, and function to destabilize societies in Africa, Asia, and the Middle East. Driven by the need to detect the presence of HIV viral sequence, here we demonstrate that the second-order nonlinear optical (NLO) properties of gold nanorods can be used for screening HIV-1 viral DNA sequence without any modification, with good sensitivity (100 pico-molar) and selectivity (single base-pair mismatch). The hyper-Rayleigh scattering (HRS) intensity increases 45 times when a label-free 145-mer, ss-gag gene DNA, was hybridized with 100 pM target DNA. The mechanism of HRS intensity change has been discussed with experimental evidence for higher multipolar contribution to the NLO response of gold nanorods.

[1]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[2]  Paresh Chandra Ray Prof. Diagnostics of Single Base-Mismatch DNA Hybridization on Gold Nanoparticles by Using the Hyper-Rayleigh Scattering Technique , 2006 .

[3]  Zusing Yang,et al.  Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). , 2007, Angewandte Chemie.

[4]  Philip S Low,et al.  In vitro and in vivo two-photon luminescence imaging of single gold nanorods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Wei Qian,et al.  Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. , 2007, Nano letters.

[6]  Glenn P. Goodrich,et al.  Profiling the near field of a plasmonic nanoparticle with Raman-based molecular rulers. , 2006, Nano letters.

[7]  Martin Moskovits,et al.  A heterogeneous PNA-based SERS method for DNA detection. , 2007, Journal of the American Chemical Society.

[8]  G. Wiederrecht,et al.  Near-field photochemical imaging of noble metal nanostructures. , 2005, Nano letters.

[9]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[10]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[11]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[12]  A. Kondo,et al.  Nanoparticles for the delivery of genes and drugs to human hepatocytes , 2003, Nature Biotechnology.

[13]  K. Sokolov,et al.  Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. , 2007, Nano letters.

[14]  T. Mandal,et al.  Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. , 2007, Chemistry.

[15]  Inge Asselberghs,et al.  Alkynyl expanded donor-acceptor calixarenes: geometry and second-order nonlinear optical properties. , 2007, Chemistry.

[16]  G. Darbha,et al.  A gold-nanoparticle-based fluorescence resonance energy transfer probe for multiplexed hybridization detection: accurate identification of bio-agents DNA , 2007 .

[17]  J. Hupp,et al.  Nonlinear Optical Properties of Molecularly Bridged Gold Nanoparticle Arrays , 2000 .

[18]  E. Zubarev,et al.  Rings of nanorods. , 2007, Angewandte Chemie.

[19]  Paresh Chandra Ray,et al.  Gold nanoparticle based FRET assay for the detection of DNA cleavage. , 2006, The journal of physical chemistry. B.

[20]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[21]  Isabelle Russier-Antoine,et al.  Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles , 2007 .

[22]  G. Darbha,et al.  Non-resonance SERS effects of silver colloids with different shapes , 2007 .

[23]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[24]  H. Girault,et al.  Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation , 1999 .

[25]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[26]  Oliver Seitz,et al.  Triplex molecular beacons as modular probes for DNA detection. , 2007, Angewandte Chemie.

[27]  Kai Song,et al.  Syntheses and properties of two-dimensional charged nonlinear optical chromophores incorporating redox-switchable cis-tetraammineruthenium(II) centers. , 2005, Journal of the American Chemical Society.

[28]  J. Zyss,et al.  All-optical orientation of photoisomerizable octupolar zinc(II) complexes in polymer films. , 2004, Journal of the American Chemical Society.

[29]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[30]  A Paul Alivisatos,et al.  Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. , 2005, Nano letters.

[31]  M. Singh,et al.  Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. , 2006, Journal of the American Chemical Society.

[32]  Paresh Chandra Ray,et al.  Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. , 2007, ACS nano.

[33]  K. Clays,et al.  X-Shaped electro-optic chromophore with remarkably blue-shifted optical absorption. Synthesis, characterization, linear/nonlinear optical properties, self-assembly, and thin film microstructural characteristics. , 2006, Journal of the American Chemical Society.

[34]  W. Knoll,et al.  Surface-plasmon-enhanced fluorescence spectroscopy for DNA detection using fluorescently labeled PNA as "DNA indicator". , 2007, Angewandte Chemie.

[35]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[36]  S. Natarajan,et al.  Inorganic-organic hybrid structures: open-framework iron phosphite-oxalates of varying dimensionality. , 2007, Chemistry.

[37]  Tom N. Grossmann,et al.  Triplex‐basierte “molecular beacons” als modulare Sonden zur DNA‐Detektion , 2007 .

[38]  Jari Turunen,et al.  Multipole interference in the second-harmonic optical radiation from gold nanoparticles. , 2007, Physical review letters.

[39]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[40]  George C. Schatz,et al.  Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography , 2007 .

[41]  Koen Clays,et al.  Hyper-Rayleigh scattering in solution. , 1991 .

[42]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[43]  P. Ray Diagnostics of single base-mismatch DNA hybridization on gold nanoparticles by using the hyper-Rayleigh scattering technique. , 2006, Angewandte Chemie.

[44]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.