Quantitative De Giorgi methods in kinetic theory
暂无分享,去创建一个
[1] Cyril Imbert,et al. LOG-TRANSFORM AND THE WEAK HARNACK INEQUALITY FOR KINETIC FOKKER-PLANCK EQUATIONS , 2021, Journal of the Institute of Mathematics of Jussieu.
[2] S. Polidoro,et al. A survey on the classical theory for Kolmogorov equation , 2019, 1907.05155.
[3] Jessica Guerand. Quantitative regularity for parabolic De Giorgi classes , 2019, 1903.07421.
[4] Christian Schmeiser,et al. Hypocoercivity without confinement , 2017, Pure and Applied Analysis.
[5] L. Silvestre,et al. The weak Harnack inequality for the Boltzmann equation without cut-off , 2016, Journal of the European Mathematical Society.
[6] C. Mouhot,et al. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation , 2016, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.
[7] Dongsheng Li,et al. A note on the Harnack inequality for elliptic equations in divergence form , 2016, 1901.06128.
[8] F. Golse,et al. H\"{o}lder regularity for hypoelliptic kinetic equations with rough diffusion coefficients , 2015, 1506.01908.
[9] Wendong Wang,et al. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations , 2010 .
[10] Wendong Wang,et al. The Cα regularity of a class of non-homogeneous ultraparabolic equations , 2007, 0711.3411.
[11] A. Pascucci,et al. THE MOSER'S ITERATIVE METHOD FOR A CLASS OF ULTRAPARABOLIC EQUATIONS , 2004 .
[12] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[13] J. Moser. A Harnack inequality for parabolic di2erential equations , 1964 .
[14] A. Vasseur. THE DE GIORGI METHOD FOR ELLIPTIC AND PARABOLIC EQUATIONS AND SOME APPLICATIONS , 2014 .
[15] L. Evans. Measure theory and fine properties of functions , 1992 .
[16] A. Kolmogoroff,et al. Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .
[17] Ronald F. Gariepy,et al. Measure Theory and Fine Properties of Functions, Revised Edition , 1865 .