Refinement of the Si–O–Si bond angle distribution in vitreous silica

A model of silica glass consisting of a fully connected corner-sharing network of SiO4 tetrahedra is refined using neutron diffraction data and reverse Monte Carlo modelling. This model is then used to investigate optimal inter-tetrahedral Si–O–Si bond angle distributions. The distribution which is most consistent with the data is found to be centred around θSi−O−Si = 151.0° with a standard deviation of between 9° and 12°. Other recent determinations of the Si–O–Si bond angle distribution are in good agreement with this result.

[1]  A. Cormack,et al.  Si–O–Si bond angle and torsion angle distribution in vitreous silica and sodium silicate glasses , 2003 .

[2]  R. F. Pettifer,et al.  Determination of the Si–O–Si bond angle distribution in vitreous silica by magic angle spinning NMR , 1984, Nature.

[3]  R. Mozzi,et al.  The structure of vitreous silica , 1969 .

[4]  Martin T. Dove,et al.  Neutron total scattering method: simultaneous determination of long-range and short-range order in disordered materials , 2002 .

[5]  A. Wright,et al.  Neutron scattering from vitreous silica IV. Time-of-flight diffraction☆ , 1990 .

[6]  T. Carpenter,et al.  29Si MAS NMR studies of the spin-lattice relaxation time and bond-angle distribution in vitreous silica , 1986 .

[7]  Rino,et al.  Interaction potential for SiO2: A molecular-dynamics study of structural correlations. , 1990, Physical review. B, Condensed matter.

[8]  A. Lasaga,et al.  Molecular dynamics simulations of SiO 2 melt and glass; ionic and covalent models , 1988 .

[9]  A. Sebald,et al.  Deconvolution of 29Si magic-angle spinning nuclear magnetic resonance spectra of silicate glasses revisited--some critical comments. , 1995, Solid state nuclear magnetic resonance.

[10]  Bernd G. Pfrommer,et al.  Si-O-Si bond-angle distribution in vitreous silica from first-principles 29 Si NMR analysis , 2000 .

[11]  A. Pines,et al.  Quantification of the disorder in network-modified silicate glasses , 1992, Nature.

[12]  D. Keen Refining disordered structural models using reverse monte carlo methods: Application to vitreous silica , 1997 .

[13]  D. Keen A comparison of various commonly used correlation functions for describing total scattering , 2001 .

[14]  Denis Weaire,et al.  Modeling Tetrahedrally Bonded Random Networks by Computer , 1987 .

[15]  M. D. Zeidler,et al.  Amorphous silica studied by high energy X-ray diffraction , 1995 .

[16]  Car,et al.  Model of vitreous SiO2 generated by an ab initio molecular-dynamics quench from the melt. , 1995, Physical review. B, Condensed matter.

[17]  R. Ibberson,et al.  GEM — General materials diffractometer at ISIS , 1997 .

[18]  John A. Wilson,et al.  Reinterpretation of femtosecond laser pump-probe and thermomodulation optical spectroscopy results on HTSC materials in terms of the resonant negative-U model , 2000 .

[19]  Mark Harris,et al.  Dynamics of silica glass: two-level tunnelling states and low-energy floppy modes , 2000 .

[20]  W. Howells,et al.  The analysis of liquid structure data from time-of-flight neutron diffractometry , 1989 .

[21]  J. Stebbins,et al.  Correlated structural distributions in silica glass , 2004 .

[22]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[23]  J. Neuefeind,et al.  Bond angle distribution in amorphous germania and silica , 1996, chem-ph/9603004.

[24]  Nakano,et al.  Structure of rings in vitreous SiO2. , 1993, Physical review. B, Condensed matter.

[25]  Magali Benoit,et al.  Model of silica glass from combined classical and ab initio molecular-dynamics simulations , 2000 .

[26]  Kimmo Kaski,et al.  Realistic models of amorphous silica: A comparative study of different potentials , 2003 .

[27]  R. Mcgreevy,et al.  Structural modelling of glasses using reverse Monte Carlo simulation , 1990, Nature.

[28]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .