Population Monte Carlo schemes with reduced path degeneracy

Population Monte Carlo (PMC) algorithms are versatile adaptive tools for approximating moments of complicated distributions. A common problem of PMC algorithms is the so-called path degeneracy; the diversity in the adaptation is endangered due to the resampling step. In this paper we focus on novel population Monte Carlo schemes that present enhanced diversity, compared to the standard approach, while keeping the same implementation structure (sample generation, weighting and resampling). The new schemes combine different weighting and resampling strategies to reduce the path degeneracy and achieve a higher performance at the cost of additional low computational complexity cost. Computer simulations compare the different alternatives in a frequency estimation problem with superimposed sinusoids embedded in Gaussian noise.

[1]  François Septier,et al.  Independent Resampling Sequential Monte Carlo Algorithms , 2016, IEEE Transactions on Signal Processing.

[2]  Jukka Corander,et al.  Layered adaptive importance sampling , 2015, Statistics and Computing.

[3]  Joaquín Míguez,et al.  Robust mixture populationmonte Carlo scheme with adaptation of the number of components , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[4]  Ingmar Schuster,et al.  Gradient Importance Sampling , 2015, 1507.05781.

[5]  Luca Martino,et al.  Adaptive population importance samplers: A general perspective , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[6]  Jean-Michel Marin,et al.  Population Monte Carlo for Ion Channel Restoration , 2002 .

[7]  Jean-Michel Marin,et al.  Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..

[8]  Jukka Corander,et al.  A gradient adaptive population importance sampler , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  Luca Martino,et al.  Improving population Monte Carlo: Alternative weighting and resampling schemes , 2016, Signal Process..

[10]  Petar M. Djuric,et al.  Adaptive Importance Sampling: The past, the present, and the future , 2017, IEEE Signal Processing Magazine.

[11]  Xiaodong Wang,et al.  Monte Carlo methods for signal processing , 2005 .

[12]  Mónica F. Bugallo,et al.  Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation , 2010, IEEE Journal of Selected Topics in Signal Processing.

[13]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[14]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[15]  David Luengo,et al.  Generalized Multiple Importance Sampling , 2015, Statistical Science.

[16]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[17]  William J. Fitzgerald,et al.  Markov chain Monte Carlo methods with applications to signal processing , 2001, Signal Process..

[18]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[19]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[20]  Mónica F. Bugallo,et al.  Efficient Multiple Importance Sampling Estimators , 2015, IEEE Signal Processing Letters.

[21]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[22]  Luca Martino,et al.  Weighting a resampled particle in Sequential Monte Carlo , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[23]  Mónica F. Bugallo,et al.  Population Monte Carlo methodology a la Gibbs sampling , 2011, 2011 19th European Signal Processing Conference.