Abstract The calculation of destructive re-entries and the prediction of the related ground risk potential due to fragment objects reaching the ground have become of high interest in the past years. This was also evident during the re-entry of the MIR space station in 2001. In 1995, under ESA contract, HTG started an international cooperation with other companies and institutes to develop the SCARAB software system (Spacecraft Atmospheric Re-Entry and Aerothermal Break-Up). SCARAB is a quasi-deterministic tool, modeling a re-entry object down to sub-system level. The resulting aerodynamic parameters and mass distribution allow calculating a realistic 6D re-entry trajectory. Geometry and mass are continuously updated during calculation. Multi-level fragmentations due to different destruction processes are considered. The SCARAB software has been applied to several projects, namely ATV (ESA), ROSAT (Germany), Ariane-5 (ESA) and BeppoSAX (Italy). The practical application of SCARAB to project work has been demonstrated. In addition SCARAB has been compared with NASA's ORSAT code. It has also been verified with experimental data gained from re-entry vehicles, break-up observations and wind-tunnel tests. SCARAB is now on the way to become the European standard software for re-entry destruction analysis.