A cellular automaton model of excitable media. III: fitting the Belousov-Zhabotinskiic reaction

[1]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[2]  O. Selfridge,et al.  Studies on flutter and fibrillation; some notes on the theory of flutter. , 1948, Archivos del Instituto de Cardiologia de Mexico.

[3]  J A ABILDSKOV,et al.  Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. , 1959, American heart journal.

[4]  W. Rheinboldt,et al.  A COMPUTER MODEL OF ATRIAL FIBRILLATION. , 1964, American heart journal.

[5]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[6]  Richard M. Noyes,et al.  Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction , 1974 .

[7]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[8]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[9]  John J. Tyson,et al.  OSCILLATIONS, BISTABILITY, AND ECHO WAVES IN MODELS OF THE BELOUSOV‐ZHABOTINSKII REACTION * , 1979 .

[10]  J. Tyson,et al.  Target patterns in a realistic model of the Belousov–Zhabotinskii reaction , 1980 .

[11]  C. Vidal,et al.  Non-Equilibrium Dynamics in Chemical Systems , 1984 .

[12]  J. Tyson,et al.  The Speed of Propagation of Oxidizing and Reducing Wave Fronts in the Belousov-Zhabotinskii Reaction , 1984 .

[13]  E. Winfree,et al.  Organizing centers in a cellular excitable medium , 1985 .

[14]  B. Hess,et al.  The Structure of the Core of the Spiral Wave in the Belousov-Zhabotinskii Reaction , 1985, Science.

[15]  R. J. Field,et al.  On the oxybromine chemistry rate constants with cerium ions in the Field-Koeroes-Noyes mechanism of the Belousov-Zhabotinskii reaction: the equilibrium HBrO2 + BrO3- + H+ .dblharw. 2BrO.ovrhdot.2 + H2O , 1986 .

[16]  J. Keener A geometrical theory for spiral waves in excitable media , 1986 .

[17]  J. Keener,et al.  Spiral waves in the Belousov-Zhabotinskii reaction , 1986 .

[18]  A Goldbeter,et al.  A Model Based on Receptor Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. , 1987, Biophysical journal.

[19]  A. T. Winfree,et al.  Simulation of Wave Processes in Excitable Media , 1988 .

[20]  Measurement of dispersion relation of chemical waves in an oscillatory reacting medium , 1988 .

[21]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[22]  J. Keener,et al.  The Motion of Untwisted Untorted Scroll Waves in Belousov-Zhabotinsky Reagent , 1988, Science.

[23]  James P. Keener,et al.  Dispersion of traveling waves in the Belousov-Zhabotinskii reaction , 1988 .

[24]  A. S. Mikhailov,et al.  Kinematic approach to the description of autowave processes in active media , 1988 .

[25]  James P. Keener,et al.  The dynamics of three-dimensional scroll waves in excitable media , 1988 .

[26]  Wolfgang Jahnke,et al.  Three-dimensional scroll ring dynamics in the Belousov-Zhabotinskii reagent and in the two-variable Oregonator model , 1989 .

[27]  J. Tyson,et al.  Experimental study of the chemical waves in the cerium-catalyzed Belousov-Zhabotinskii reaction. 2. Concentration profiles , 1989 .

[28]  J. Tyson,et al.  Experimental study of the chemical waves in the cerium-catalyzed Belousov-Zhabotinskii reaction. 1. Velocity of trigger waves , 1989 .

[29]  Self-organization in chemistry and biology , 1989 .

[30]  John J. Tyson,et al.  Spiral waves of cyclic amp in a model of slime mold aggregation , 1989 .

[31]  W. Skaggs,et al.  Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .

[32]  J. Tyson,et al.  A cellular automaton model of excitable media. II: curvature, dispersion, rotating waves and meandering waves , 1990 .

[33]  J. Tyson,et al.  A cellular automation model of excitable media including curvature and dispersion. , 1990, Science.