Three Evolutionary Optimization Algorithms in PI Controller Tuning

This chapter discusses three evolutionary optimization algorithms employed in the optimal tuning of PI controllers dedicated to a class of second-order processes with an integral component and variable parameters. The evolutionary algorithms used in this chapter are: Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA) and Charged System Search (CSS). The PI controllers are tuned such that to ensure a reduced sensitivity with respect to the parametric variations of the small time constant of the process. The application of the algorithms is illustrated in a case study.

[1]  Ladislav Madarász,et al.  Adaptation of Fuzzy Cognitive Maps - a Comparison Study , 2010 .

[2]  Z. Johanyák Student Evaluation Based On Fuzzy Rule Interpolation , 2010 .

[3]  Q. Han,et al.  Delay-range-dependent robust stabilization for uncertain T-S fuzzy control systems with interval time-varying delays , 2011, Inf. Sci..

[4]  Chih-Lyang Hwang,et al.  Trajectory-based control under ZMP constraint for the 3D biped walking via fuzzy control , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[5]  Stefan Preitl,et al.  Fuzzy Control Systems With Reduced Parametric Sensitivity Based on Simulated Annealing , 2012, IEEE Transactions on Industrial Electronics.

[6]  A. Kaveh,et al.  Charged system search for optimum grillage system design using the LRFD-AISC code , 2010 .

[7]  Ramin Rajabioun,et al.  Cuckoo Optimization Algorithm , 2011, Appl. Soft Comput..

[8]  Stefan Preitl,et al.  An extension of tuning relations after symmetrical optimum method for PI and PID controllers , 1999, Autom..

[9]  Stefan Preitl,et al.  Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity , 2013, Inf. Sci..

[10]  József K. Tar,et al.  Parametric sensitivity reduction of PI-based control systems by means of evolutionary optimization algorithms , 2011, 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI).

[11]  Hideki Hashimoto,et al.  Fuzzy inversion and rule base reduction , 1997, Proceedings of IEEE International Conference on Intelligent Engineering Systems.

[12]  De Xu,et al.  A Vision-Based Self-Tuning Fuzzy Controller for Fillet Weld Seam Tracking , 2011, IEEE/ASME Transactions on Mechatronics.

[13]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[14]  Shahram Payandeh,et al.  Fitted Stratified Manipulation with Decomposed Path Planning on Submanifolds , 2005, Int. J. Robotics Autom..

[15]  Milos Manic,et al.  Self-Organizing Fuzzy Haptic Teleoperation of Mobile Robot Using Sparse Sonar Data , 2011, IEEE Transactions on Industrial Electronics.

[16]  Z. Benyo,et al.  Product review - Control system professional suite , 2005, IEEE Control Systems.

[17]  Igor Škrjanc,et al.  Adaptive law with a new leakage term , 2010 .

[18]  Gerald Schaefer,et al.  Intelligent Computational Optimization in Engineering: Techniques and Applications , 2011, Intelligent Computational Optimization in Engineering.

[19]  Pezhman Sharafi,et al.  Charged system search algorithm for minimax and minisum facility layout problems , 2011 .

[20]  Mao Jianlin,et al.  Evolutionary algorithms based parameters tuning of PID controller , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[21]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[22]  Rajkumar Roy,et al.  Soft Computing in Industrial Applications , 2000, Springer London.

[23]  József K. Tar,et al.  Optimal Control Systems with Reduced Parametric Sensitivity Based on Particle Swarm Optimization and Simulated Annealing , 2011, Intelligent Computational Optimization in Engineering.

[24]  Okyay Kaynak,et al.  Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants , 2010, IEEE Transactions on Industrial Electronics.

[25]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[26]  Hamidreza Modares,et al.  System Identification and Control using Adaptive Particle Swarm Optimization , 2011 .

[27]  Yeung Yam,et al.  Singular value-based approximation with Takagi-Sugeno type fuzzy rule base , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[28]  Xavier Blasco Ferragud,et al.  An empirical study on parameter selection for multiobjective optimization algorithms using Differential Evolution , 2011, 2011 IEEE Symposium on Differential Evolution (SDE).

[29]  Bogdan M. Wilamowski,et al.  Compensation of Nonlinearities Using Neural Networks Implemented on Inexpensive Microcontrollers , 2011, IEEE Transactions on Industrial Electronics.

[30]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[31]  Siamak Talatahari,et al.  Optimal design of skeletal structures via the charged system search algorithm , 2010 .

[32]  József K. Tar,et al.  Generic two-degree-of-freedom linear and fuzzy controllers for integral processes , 2009, J. Frankl. Inst..

[33]  Plamen Angelov,et al.  Hybrid modelling of biotechnological processes using neural networks , 1999 .

[34]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[35]  Alireza Alfi,et al.  Intelligent identification and control using improved fuzzy particle swarm optimization , 2011, Expert Syst. Appl..