V Foundations of the Macroscopic Electromagnetic Theory of Dielectric Media

Publisher Summary This chapter is concerned with the derivation of the macroscopic Maxwell equations and associated constitutive relations from the underlying microscopic equations describing the dynamics of the constituent particles and the electromagnetic fields created by these particles. In the most general context, these particles are assumed to be electrons and nuclei, bound together in stable groups. For fluid systems, the derivation of the Maxwell equations, but excluding the constitutive relations, has been achieved for an arbitrary state of motion of the atoms on the basis of classical statistical mechanics. The chapter also gives a brief outline of the structure and the equations of macroscopic electrodynamics to establish the notation and the necessary definitions.

[1]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[2]  J. D. Boer Molecular distribution and equation of state of gases , 1949 .

[3]  H. Hoek General theory of the rotatory power of isotropic media , 1941 .

[4]  P. Mazur,et al.  On the statistical mechanics of matter in an electromagnetic field. I. Derivation of the maxwell equations from electron theory , 1953 .

[5]  G. Mahan,et al.  Polaritons at Surfaces , 1969 .

[6]  G. Ross Theory of Light Scattering in Amorphous Media , 1968 .

[7]  P. Drude Lehrbuch der Optik , 1900 .

[8]  P. Mazur,et al.  On the molecular theory of the kerr effect , 1959 .

[9]  B. U. Felderhof On the propagation and scattering of light in fluids , 1974 .

[10]  J. Sein A note on the Ewald-Oseen extinction theorem , 1970 .

[11]  A. Fokker XXXIX. On the contributions to the electric current from the polarization and magnetization electrons , 1920 .

[12]  V. Agranovich,et al.  Boundary conditions in media with spatial dispersion , 1973 .

[13]  E. Wolf,et al.  General form and a new interpretation of the Ewald-Oseen extinction theorem , 1972 .

[14]  Girish S. Agarwal,et al.  Structure of the Electromagnetic Field in a Spatially Dispersive Medium , 1971 .

[15]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[16]  A. A. Maradudin,et al.  Effect of Spatial Dispersion on the Properties of a Semi-Infinite Dielectric , 1973 .

[17]  P. Mazur,et al.  On the extinction theorem in electrodynamics , 1972 .

[18]  J. Vlieger,et al.  On the dielectric properties of molecular crystals , 1974 .

[19]  Dick Bedeaux,et al.  On the critical behaviour of the dielectric constant for a nonpolar fluid , 1973 .

[20]  H. A. Lorentz Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte , 1880 .

[21]  M. Fixman Molecular Theory of Light Scattering , 1955 .

[22]  P. Mazur,et al.  On the theory of the refractive index of non-polar gases: I. Quantum mechanical part , 1956 .

[23]  C. Oseen Über die Wechselwirkung zwischen zwei elektrischen Dipolen und üer die Drehung der Polarisationsebene in Kristallen und Flüssigkeiten , 1915 .

[24]  J. Vlieger On the derivation of the integral equation for the propagation of light in dielectric crystals , 1971 .

[25]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[26]  W. Esmarch Über die Ausbreitung elektromagnetischer Wellen in dispergierenden Medien , 1913 .

[27]  J. Sein General extinction theorems , 1975 .

[28]  John E. Sipe,et al.  Macroscopic electromagnetic theory of resonant dielectrics , 1974 .

[29]  J. Sipe,et al.  Energy Band Models for Spatially Dispersive Dielectric Media , 1975 .

[30]  J. D. Ramshaw Existence of the dielectric constant in nonpolar fluids , 1972 .

[31]  D. Pattanayak Non-local boundary conditions and surface integral equations in electromagnetic scattering theory , 1975 .

[32]  G. Agarwal,et al.  Electromagnetic fields in spatially dispersive media , 1974 .

[33]  G. Russakoff,et al.  A Derivation of the Macroscopic Maxwell Equations , 1970 .

[34]  J. Vlieger,et al.  Derivation of Maxwell's equations: The statistical theory of the macroscopic equations , 1965 .

[35]  D. G. Thomas,et al.  Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals , 1963 .

[36]  F. Reiche Zur Theorie der Dispersion in Gasen und Dämpfen , 1916 .

[37]  H. Faxén Der Zusammenhang zwischen den Maxwellschen Gleichungen für Dielektrika und den atomistischen Ansätzen von H. A. Lorentz u. a. , 1920 .