On classical solutions of the relativistic Vlasov-Klein-Gordon system.
暂无分享,去创建一个
Gerald Teschl | Gerhard Rein | Michael Kunzinger | Roland Steinbauer | G. Teschl | G. Rein | M. Kunzinger | R. Steinbauer
[1] W. Strauss,et al. Absence of shocks in an initially dilute collisionless plasma , 1987 .
[2] H. Spohn,et al. SCATTERING THEORY FOR A PARTICLE COUPLED TO A SCALAR FIELD , 2003 .
[3] Gerald Teschl,et al. Global Weak Solutions of the Relativistic Vlasov-Klein-Gordon System , 2002 .
[4] M. Kunze,et al. Effective Dynamics for a Mechanical Particle Coupled to a Wave Field , 1999 .
[5] Gerhard Rein,et al. Global Weak Solutions to the Relativistic Vlasov-Maxwell System Revisited , 2004 .
[6] T. Sideris. Decay estimates for the three-dimensional inhomogeneous klein-gordon equation and applications , 1989 .
[7] P. Lions,et al. Global weak solutions of Vlasov‐Maxwell systems , 1989 .
[8] J. W.. Theorie der Elektrizität , 1934, Nature.
[9] Walter A. Strauss,et al. Singularity formation in a collisionless plasma could occur only at high velocities , 1986 .
[10] P. Markowich,et al. Scattering of solitons of the Klein–Gordon equation coupled to a classical particle , 2003 .
[11] H. Spohn,et al. Soliton-like asymptotics for a classical particle interacting with a scalar wave field , 1998 .
[12] W. Strauss,et al. Decay and scattering of solutions of a nonlinear relativistic wave equation , 1972 .