Generalized negligible morphisms and their tensor ideals
暂无分享,去创建一个
[1] Pramod N. Achar,et al. ON THE HUMPHREYS CONJECTURE ON SUPPORT VARIETIES OF TILTING MODULES , 2017, Transformation Groups.
[2] V. Ostrik. Dimensions of quantized tilting modules , 1999 .
[3] Nathan Geer,et al. Traces on ideals in pivotal categories , 2011, 1103.1660.
[4] 高田 敏恵. 書評 Turaev: Quantum Invariants of Knots and 3-Manifolds〔和文〕 , 2000 .
[5] H. H. Andersen. Tensor products of quantized tilting modules , 1992 .
[6] L. Scott,et al. Finite dimensional algebras and highest weight categories. , 1988 .
[7] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[8] Y. André,et al. Erratum : Nilpotence, radicaux et structures monoïdales , 2005 .
[9] Nathan Geer,et al. The trace on projective representations of quantum groups , 2016, 1610.09129.
[10] A. Kirillov,et al. Lectures on tensor categories and modular functors , 2000 .
[11] Nathan Geer,et al. Ambidextrous objects and trace functions for nonsemisimple categories , 2011, 1106.4477.
[12] Mee Seong Im,et al. The affine VW supercategory , 2018, Selecta Mathematica.
[13] M. Blank. Dynamics of traffic jams: order and chaos , 2001, nlin/0101051.
[14] J. Jantzen. Representations of algebraic groups , 1987 .
[15] Brian D. Boe,et al. Tensor Triangular Geometry for Classical Lie Superalgebras , 2014, 1402.3732.
[16] J. Paradowski,et al. Fusion categories arising from semisimple Lie algebras , 1995 .
[17] 李聖昊,et al. 28 , 1910, Tao te Ching.
[18] 佐藤 雄一. 32 , 2019, Magical Realism for Non-Believers.
[19] Carter Ratcliff. 36 , 2012, The Hatak Witches.
[20] J. Brundan. Representations of the oriented skein category , 2017, 1712.08953.
[21] 104 , 2018, The Devil's Fork.
[22] H. H. Andersen,et al. Representations of quantum algebras , 1991 .
[23] William D. Hardesty. On support varieties and the Humphreys conjecture in type $A$ , 2015, 1507.00970.
[24] B. M. Fulk. MATH , 1992 .
[25] J. S. Milne,et al. Tannakian Categories , 2012 .
[26] A path algorithm for affine Kazhdan-Lusztig polynomials , 2000, math/0011245.
[27] G. Lusztig. Cells in Affine Weyl Groups , 1985 .
[28] On fusion categories , 2002, math/0203060.
[29] Cohomology of Infinitesimal Quantum Algebras , 2000 .
[30] Categorical diagonalization of full twists , 2017, 1801.00191.
[31] J. Brundan,et al. Monoidal Supercategories , 2016, 1603.05928.
[32] Joel T. Feih,et al. 149 , 2019, Critical Care Medicine.
[33] Nilpotence, radicaux et structures monoïdales , 2002, math/0203273.
[34] Н. Грейда,et al. 17 , 2019, Magical Realism for Non-Believers.
[35] Paul Balmer. The spectrum of prime ideals in tensor triangulated categories , 2004, math/0409360.
[36] Wolfgang Soergel,et al. Kazhdan-Lusztig polynomials and a combinatoric for tilting modules , 1997 .
[37] K. Coulembier. Tensor ideals, Deligne categories and invariant theory , 2017, Selecta Mathematica.
[38] V. Turaev. Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.
[39] H. H. Andersen. The strong linkage principle for quantum groups at roots of 1 , 2003 .
[40] 24 , 1987, Magical Realism for Non-Believers.
[41] Jian-yi Shi,et al. The Kazhdan-Lusztig cells in certain affine Weyl groups , 1986 .
[42] Problemy Wspó,et al. 214 , 2019, 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).
[43] W. Soergel. Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren , 1997 .
[44] B. Jha,et al. 108 , 2013, Cytokine.
[45] Du Jie. Cells in the affine Weyl group of type D̃4 , 1990 .
[46] David Ridout,et al. Logarithmic conformal field theory , 2013 .
[47] V. Ostrik. Tensor ideals in the category of tilting modules , 1996 .
[48] Support varieties for quantum groups , 1997, q-alg/9711008.
[49] S. Ryom-Hansen. A q-Analogue of Kempf's vanishing theorem , 2009, 0905.0236.
[50] Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.
[51] J. Jantzen. Darstellungen halbeinfacher Gruppen und kontravariante Formen. , 1977 .
[52] Pierre Deligne,et al. Hodge Cycles, Motives, and Shimura Varieties , 1989 .
[53] 권경학,et al. 4 , 1906, Undiscovered Country.
[54] Jian-yi Shi,et al. Some left cells in the affine Weyl group Ẽ6 , 2018 .
[55] 野村栄一,et al. 2 , 1900, The Hatak Witches.
[56] Ashley D. Zapf. 141 , 2020, Medicine & Science in Sports & Exercise.
[57] J. Kujawa,et al. A Basis Theorem for the Degenerate Affine Oriented Brauer–Clifford Supercategory , 2017, Canadian Journal of Mathematics.
[58] W. Soergel. Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln , 1997 .
[59] George Lusztig,et al. Introduction to Quantum Groups , 1993 .
[60] B. Cooper. On the support varieties of tilting modules , 2010 .
[61] K. Hoogendoorn,et al. 226 , 2019, Critical Care Medicine.
[62] K. N. Dollman,et al. - 1 , 1743 .
[63] Brian M. Nolan,et al. Matthew , 1981 .
[64] P. Etingof,et al. On semisimplification of tensor categories , 2018, 1801.04409.
[65] G. Lusztig. Cells in affine Weyl groups, II , 1987 .
[66] T. Heidersdorf,et al. Thick ideals in Deligne's category Re_p(Oδ) , 2017 .
[67] Nathan Geer,et al. Generalized trace and modified dimension functions on ribbon categories , 2010, 1001.0985.
[68] T. Gannon,et al. Logarithmic conformal field theory, log-modular tensor categories and modular forms , 2016, 1605.04630.
[69] 이태훈,et al. § 155 , 1989, AktG.
[70] Spherical Categories , 1993, hep-th/9310164.