Generalized negligible morphisms and their tensor ideals

We introduce a generalization of the notion of a negligible morphism and study the associated tensor ideals and thick ideals. These ideals are defined by considering deformations of a given monoidal category $${\mathcal {C}}$$ C over a local ring R . If the maximal ideal of R is generated by a single element, we show that any thick ideal of $${\mathcal {C}}$$ C admits an explicitly given modified trace function. As examples we consider various Deligne categories and the categories of tilting modules for a quantum group at a root of unity and for a semisimple, simply connected algebraic group in prime characteristic. We prove an elementary geometric description of the thick ideals in quantum type A and propose a similar one in the modular case.

[1]  Pramod N. Achar,et al.  ON THE HUMPHREYS CONJECTURE ON SUPPORT VARIETIES OF TILTING MODULES , 2017, Transformation Groups.

[2]  V. Ostrik Dimensions of quantized tilting modules , 1999 .

[3]  Nathan Geer,et al.  Traces on ideals in pivotal categories , 2011, 1103.1660.

[4]  高田 敏恵 書評 Turaev: Quantum Invariants of Knots and 3-Manifolds〔和文〕 , 2000 .

[5]  H. H. Andersen Tensor products of quantized tilting modules , 1992 .

[6]  L. Scott,et al.  Finite dimensional algebras and highest weight categories. , 1988 .

[7]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[8]  Y. André,et al.  Erratum : Nilpotence, radicaux et structures monoïdales , 2005 .

[9]  Nathan Geer,et al.  The trace on projective representations of quantum groups , 2016, 1610.09129.

[10]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[11]  Nathan Geer,et al.  Ambidextrous objects and trace functions for nonsemisimple categories , 2011, 1106.4477.

[12]  Mee Seong Im,et al.  The affine VW supercategory , 2018, Selecta Mathematica.

[13]  M. Blank Dynamics of traffic jams: order and chaos , 2001, nlin/0101051.

[14]  J. Jantzen Representations of algebraic groups , 1987 .

[15]  Brian D. Boe,et al.  Tensor Triangular Geometry for Classical Lie Superalgebras , 2014, 1402.3732.

[16]  J. Paradowski,et al.  Fusion categories arising from semisimple Lie algebras , 1995 .

[17]  李聖昊,et al.  28 , 1910, Tao te Ching.

[18]  佐藤 雄一 32 , 2019, Magical Realism for Non-Believers.

[19]  Carter Ratcliff 36 , 2012, The Hatak Witches.

[20]  J. Brundan Representations of the oriented skein category , 2017, 1712.08953.

[21]  104 , 2018, The Devil's Fork.

[22]  H. H. Andersen,et al.  Representations of quantum algebras , 1991 .

[23]  William D. Hardesty On support varieties and the Humphreys conjecture in type $A$ , 2015, 1507.00970.

[24]  B. M. Fulk MATH , 1992 .

[25]  J. S. Milne,et al.  Tannakian Categories , 2012 .

[26]  A path algorithm for affine Kazhdan-Lusztig polynomials , 2000, math/0011245.

[27]  G. Lusztig Cells in Affine Weyl Groups , 1985 .

[28]  On fusion categories , 2002, math/0203060.

[29]  Cohomology of Infinitesimal Quantum Algebras , 2000 .

[30]  Categorical diagonalization of full twists , 2017, 1801.00191.

[31]  J. Brundan,et al.  Monoidal Supercategories , 2016, 1603.05928.

[32]  Joel T. Feih,et al.  149 , 2019, Critical Care Medicine.

[33]  Nilpotence, radicaux et structures monoïdales , 2002, math/0203273.

[34]  Н. Грейда,et al.  17 , 2019, Magical Realism for Non-Believers.

[35]  Paul Balmer The spectrum of prime ideals in tensor triangulated categories , 2004, math/0409360.

[36]  Wolfgang Soergel,et al.  Kazhdan-Lusztig polynomials and a combinatoric for tilting modules , 1997 .

[37]  K. Coulembier Tensor ideals, Deligne categories and invariant theory , 2017, Selecta Mathematica.

[38]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[39]  H. H. Andersen The strong linkage principle for quantum groups at roots of 1 , 2003 .

[40]  24 , 1987, Magical Realism for Non-Believers.

[41]  Jian-yi Shi,et al.  The Kazhdan-Lusztig cells in certain affine Weyl groups , 1986 .

[42]  Problemy Wspó,et al.  214 , 2019, 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[43]  W. Soergel Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren , 1997 .

[44]  B. Jha,et al.  108 , 2013, Cytokine.

[45]  Du Jie Cells in the affine Weyl group of type D̃4 , 1990 .

[46]  David Ridout,et al.  Logarithmic conformal field theory , 2013 .

[47]  V. Ostrik Tensor ideals in the category of tilting modules , 1996 .

[48]  Support varieties for quantum groups , 1997, q-alg/9711008.

[49]  S. Ryom-Hansen A q-Analogue of Kempf's vanishing theorem , 2009, 0905.0236.

[50]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[51]  J. Jantzen Darstellungen halbeinfacher Gruppen und kontravariante Formen. , 1977 .

[52]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[53]  권경학,et al.  4 , 1906, Undiscovered Country.

[54]  Jian-yi Shi,et al.  Some left cells in the affine Weyl group Ẽ6 , 2018 .

[55]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[56]  Ashley D. Zapf 141 , 2020, Medicine & Science in Sports & Exercise.

[57]  J. Kujawa,et al.  A Basis Theorem for the Degenerate Affine Oriented Brauer–Clifford Supercategory , 2017, Canadian Journal of Mathematics.

[58]  W. Soergel Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln , 1997 .

[59]  George Lusztig,et al.  Introduction to Quantum Groups , 1993 .

[60]  B. Cooper On the support varieties of tilting modules , 2010 .

[61]  K. Hoogendoorn,et al.  226 , 2019, Critical Care Medicine.

[62]  K. N. Dollman,et al.  - 1 , 1743 .

[63]  Brian M. Nolan,et al.  Matthew , 1981 .

[64]  P. Etingof,et al.  On semisimplification of tensor categories , 2018, 1801.04409.

[65]  G. Lusztig Cells in affine Weyl groups, II , 1987 .

[66]  T. Heidersdorf,et al.  Thick ideals in Deligne's category Re_p(Oδ) , 2017 .

[67]  Nathan Geer,et al.  Generalized trace and modified dimension functions on ribbon categories , 2010, 1001.0985.

[68]  T. Gannon,et al.  Logarithmic conformal field theory, log-modular tensor categories and modular forms , 2016, 1605.04630.

[69]  이태훈,et al.  § 155 , 1989, AktG.

[70]  Spherical Categories , 1993, hep-th/9310164.