Region-based image retrieval using color-size features of watershed regions

This paper presents a region-based image retrieval system that provides a user interface for helping to specify the watershed regions of interest within a query image. We first propose a new type of visual features, called color-size feature, which includes color-size histogram and moments, to integrate color and region-size information of watershed regions. Next, we design a scheme of region filtering that is based on color-size histogram to fast screen out some of most irrelevant regions and images for the preprocessing of the image retrieval. Our region-based image retrieval system applies the Earth Mover's Distance in the design of the similarity measure for image ranking and matching. Finally, we present some experiments for the color-size feature, region filtering, and retrieval results that demonstrate the efficiency of our proposed system.

[1]  Kien A. Hua,et al.  Noise-free similarity model for image retrieval systems , 2001, IS&T/SPIE Electronic Imaging.

[2]  John R. Smith,et al.  Image Classification and Querying Using Composite Region Templates , 1999, Comput. Vis. Image Underst..

[3]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Roger Weber,et al.  Efficient region-based image retrieval , 2003, CIKM '03.

[5]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[6]  Thomas S. Huang,et al.  Supporting content-based queries over images in MARS , 1997, Proceedings of IEEE International Conference on Multimedia Computing and Systems.

[7]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Kobus Barnard,et al.  Method for comparing content based image retrieval methods , 2003, IS&T/SPIE Electronic Imaging.

[9]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[10]  Stefan M. Rüger,et al.  Evaluation of Texture Features for Content-Based Image Retrieval , 2004, CIVR.

[11]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[12]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[13]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[14]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[15]  David A. Forsyth,et al.  Learning the semantics of words and pictures , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[17]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[21]  Vittorio Castelli,et al.  Image Databases: Search and Retrieval of Digital Imagery , 2002 .

[22]  Demin Wang,et al.  A multiscale gradient algorithm for image segmentation using watershelds , 1997, Pattern Recognit..

[23]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[24]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[25]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[26]  Matthew L. Miller,et al.  The Bayesian Image Retrieval System, PicHunter , 2000 .

[27]  Yi-Ping Hung,et al.  Region Filtering Using Color and Texture Features for Image Retrieval , 2005, CIVR.

[28]  David G. Stork,et al.  Pattern Classification , 1973 .

[29]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Bo Zhang,et al.  An efficient and effective region-based image retrieval framework , 2004, IEEE Transactions on Image Processing.

[31]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  James Ze Wang,et al.  Content-based image retrieval: approaches and trends of the new age , 2005, MIR '05.