Network growth and the spectral evolution model

We introduce and study the spectral evolution model, which characterizes the growth of large networks in terms of the eigenvalue decomposition of their adjacency matrices: In large networks, changes over time result in a change of a graph's spectrum, leaving the eigenvectors unchanged. We validate this hypothesis for several large social, collaboration, authorship, rating, citation, communication and tagging networks, covering unipartite, bipartite, signed and unsigned graphs. Following these observations, we introduce a link prediction algorithm based on the extrapolation of a network's spectral evolution. This new link prediction method generalizes several common graph kernels that can be expressed as spectral transformations. In contrast to these graph kernels, the spectral extrapolation algorithm does not make assumptions about specific growth patterns beyond the spectral evolution model. We thus show that it performs particularly well for networks with irregular, but spectral, growth patterns.

[1]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[2]  Jérôme Kunegis,et al.  Learning spectral graph transformations for link prediction , 2009, ICML '09.

[3]  Michael Ley,et al.  The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives , 2002, SPIRE.

[4]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[5]  Vaclav Petricek,et al.  Recommender System for Online Dating Service , 2007, ArXiv.

[6]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[7]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[8]  Yiming Yang,et al.  The Enron Corpus: A New Dataset for Email Classi(cid:12)cation Research , 2004 .

[9]  Kevin Emamy,et al.  Citeulike: A Researcher's Social Bookmarking Service , 2007 .

[10]  Christian Bauckhage,et al.  The slashdot zoo: mining a social network with negative edges , 2009, WWW.

[11]  Michalis Faloutsos,et al.  Online social networks , 2010, IEEE Network.

[12]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender Systems , 2000 .

[13]  Andreas Hotho,et al.  BibSonomy: a social bookmark and publication sharing system , 2006 .

[14]  Daniel Stewart Social Status in an Open-Source Community , 2005 .

[15]  G. Stewart Perturbation theory for the singular value decomposition , 1990 .

[16]  C. Lee Giles,et al.  CiteSeer: an autonomous Web agent for automatic retrieval and identification of interesting publications , 1998, AGENTS '98.

[17]  Ulrike von Luxburg,et al.  The Resistance Distance is Meaningless for Large Random Geometric Graphs , 2009 .

[18]  Peter Druschel,et al.  Online social networks: measurement, analysis, and applications to distributed information systems , 2009 .

[19]  Aihui Zhou,et al.  Eigenvalues of rank-one updated matrices with some applications , 2007, Appl. Math. Lett..

[20]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[21]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[22]  Nello Cristianini,et al.  Learning Semantic Similarity , 2002, NIPS.

[23]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[24]  François Fouss,et al.  An Experimental Investigation of Graph Kernels on a Collaborative Recommendation Task , 2006, Sixth International Conference on Data Mining (ICDM'06).

[25]  Zoubin Ghahramani,et al.  Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning , 2004, NIPS.

[26]  James Bennett,et al.  The Netflix Prize , 2007 .

[27]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[28]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[29]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[30]  Paolo Avesani,et al.  Controversial Users Demand Local Trust Metrics: An Experimental Study on Epinions.com Community , 2005, AAAI.

[31]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[32]  Krishna P. Gummadi,et al.  Growth of the flickr social network , 2008, WOSN '08.

[33]  Zoubin Ghahramani,et al.  Graph Kernels by Spectral Transforms , 2006, Semi-Supervised Learning.

[34]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.