Neutral and adaptive variation in gene expression.

Variation among populations in gene expression should be related to the accumulation of random-neutral changes and evolution by natural selection. The following evolutionary analysis has general applicability to biological and medical science because it accounts for genetic relatedness and identifies patterns of expression variation that are affected by natural selection. To identify genes evolving by natural selection, we allocate the maximum among-population variation to genetic distance and then examine the remaining variation relative to a hypothesized important ecological parameter (temperature). These analyses measure the expression of metabolic genes in common-gardened populations of the fish Fundulus heteroclitus whose habitat is distributed along a steep thermal gradient. Although much of the variation in gene expression fits a null model of neutral drift, the variation in expression for 22% of the genes that regress with habitat temperature was far greater than could be accounted for by genetic distance alone. The most parsimonious explanation for among-population variation for these genes is evolution by natural selection. In addition, many metabolic genes have patterns of variation incongruent with neutral evolution: They have too much or too little variation. These patterns of biological variation in expression may reflect important physiological or ecological functions.

[1]  H. N. Barber Selection in natural populations , 1965, Heredity.

[2]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[3]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[4]  L. Partridge,et al.  Oxford Surveys in Evolutionary Biology , 1991 .

[5]  N. W. Riser Epilogue: Nemertinea, a Successful Phylum , 1985 .

[6]  C. Prosser,et al.  Adaptational Biology: Molecules to Organisms , 1986 .

[7]  D. Crawford,et al.  Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Kimura,et al.  Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Crawford,et al.  Evolutionary adaptation to different thermal environments via transcriptional regulation. , 1992, Molecular biology and evolution.

[10]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[11]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[12]  D. Penny The comparative method in evolutionary biology , 1992 .

[13]  G. Bernardi,et al.  Concordant mitochondrial and nuclear DNA phylogenies for populations of the teleost fish Fundulus heteroclitus. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michelle R. Leishman,et al.  On misinterpreting the phylogenetic correction , 1995 .

[15]  F. Maytag Evolution , 1996, Arch. Mus. Informatics.

[16]  M. Kreitman,et al.  The neutral theory is dead. Long live the neutral theory. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  N. Takahata Neutral theory of molecular evolution. , 1996, Current opinion in genetics & development.

[18]  D. Crawford,et al.  Phylogenetic analysis of glycolytic enzyme expression. , 1997, Science.

[19]  R. Quatrano Genomics , 1998, Plant Cell.

[20]  H. A. Orr,et al.  Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. , 1998, Genetics.

[21]  The Molecular Anatomy of an Ancient Adaptive Event , 1998 .

[22]  D. Botstein,et al.  Systematic changes in gene expression patterns following adaptive evolution in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Crawford,et al.  Evolutionary analysis of TATA-less proximal promoter function. , 1999, Molecular biology and evolution.

[24]  D. Hartl,et al.  Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Burt,et al.  Natural selection in the wild. , 2000, Trends in ecology & evolution.

[26]  J. Childress,et al.  Light-limitation on predator-prey interactions: consequences for metabolism and locomotion of deep-sea cephalopods. , 2000, The Biological bulletin.

[27]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[28]  F J Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[29]  Russell D. Wolfinger,et al.  The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster , 2001, Nature Genetics.

[30]  Andrew G. Clark,et al.  Haplotype Diversity and Linkage Disequilibrium at Human G6PD: Recent Origin of Alleles That Confer Malarial Resistance , 2001, Science.

[31]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[32]  P. Nelson,et al.  Project normal: Defining normal variance in mouse gene expression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Pääbo,et al.  Intra- and Interspecific Variation in Primate Gene Expression Patterns , 2002, Science.

[34]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[35]  G. Churchill,et al.  Variation in gene expression within and among natural populations , 2002, Nature Genetics.

[36]  Scott A. Rifkin,et al.  Evolution of gene expression in the Drosophila melanogaster subgroup , 2003, Nature Genetics.

[37]  Matthew W. Hahn,et al.  The evolution of transcriptional regulation in eukaryotes. , 2003, Molecular biology and evolution.

[38]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[39]  R. Spielman,et al.  Natural variation in human gene expression assessed in lymphoblastoid cells , 2003, Nature Genetics.

[40]  Matthew W. Hahn,et al.  Positive Selection on a Human-Specific Transcription Factor Binding Site Regulating IL4 Expression , 2003, Current Biology.

[41]  Pawel Michalak,et al.  Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements. , 2003, Molecular biology and evolution.

[42]  D. Hartl,et al.  Population genetic variation in genome-wide gene expression. , 2003, Molecular biology and evolution.

[43]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Cashon,et al.  Biochemical genetics of Fundulus heteroclitus (L.). IV. Spatial variation in gene frequencies of Idh-A, Idh-B, 6-Pgdh-A, and Est-S , 1981, Biochemical Genetics.

[45]  S. Nuzhdin,et al.  Additivity and trans-acting Effects on Gene Expression in Male Drosophila simulans , 2004, Genetics.

[46]  I. Yanai,et al.  Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. , 2004, Omics : a journal of integrative biology.

[47]  A. Whitehead,et al.  Variation in tissue-specific gene expression among natural populations , 2005, Genome Biology.

[48]  S. Pääbo,et al.  A Neutral Model of Transcriptome Evolution , 2004, PLoS biology.

[49]  J. Stamatoyannopoulos,et al.  The genomics of gene expression. , 2004, Genomics.

[50]  Greg Gibson,et al.  Extensive Sex-Specific Nonadditivity of Gene Expression in Drosophila melanogaster , 2004, Genetics.

[51]  J. Rogers,et al.  Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Lauren M McIntyre,et al.  Common pattern of evolution of gene expression level and protein sequence in Drosophila. , 2004, Molecular biology and evolution.

[53]  B. Weir,et al.  The quantitative genetics of transcription. , 2005, Trends in genetics : TIG.

[54]  D. Hartl,et al.  RATES OF DIVERGENCE IN GENE EXPRESSION PROFILES OF PRIMATES, MICE, AND FLIES: STABILIZING SELECTION AND VARIABILITY AMONG FUNCTIONAL CATEGORIES , 2005, Evolution; international journal of organic evolution.

[55]  D. Duvernell,et al.  Microsatellite primers for the Atlantic coastal killifish, Fundulus heteroclitus, with applicability to related Fundulus species , 2005 .

[56]  T. Mitchell-Olds Faculty Opinions recommendation of Population genetic and phylogenetic evidence for positive selection on regulatory mutations at the factor VII locus in humans. , 2005 .

[57]  D. Crawford,et al.  Natural variation in cardiac metabolism and gene expression in Fundulus heteroclitus , 2005, Nature Genetics.

[58]  L. Christiansen,et al.  Genetic dissection of gene expression observed in whole blood samples of elderly Danish twins , 2005, Human Genetics.

[59]  Vineet K. Sharma,et al.  Assessing natural variations in gene expression in humans by comparing with monozygotic twins using microarrays. , 2005, Physiological genomics.