Handling Conflicts in Depth-First Search for LTL Tableau to Debug Compliance Based Languages

Providing adequate tools to tackle the problem of inconsistent compliance rules is a critical research topic. This problem is of paramount importance to achieve automatic support for early declarative design and to support evolution of rules in contract-based or service-based systems. In this paper, we investigate the problem of extracting temporal unsatisfiable cores in order to detect the inconsistent part of a specification. We extend conflict-driven SAT-solver to provide a new conflict-driven depth-first-search solver for temporal logic. We use this solver to compute LTL unsatisfiable cores, whithout re-exploring the history of the solver. We provide sound and complete proofs together with complexity results.

[1]  Armin Biere,et al.  Compressing BMC Encodings with QBF , 2007, BMC@FLoC.

[2]  Mary Sheeran,et al.  Checking Safety Properties Using Induction and a SAT-Solver , 2000, FMCAD.

[3]  Thomas A. Henzinger,et al.  Logics and Models of Real Time: A Survey , 1991, REX Workshop.

[4]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[5]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[6]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[7]  Aarti Gupta,et al.  Beyond safety: customized SAT-based model checking , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[8]  Timo Latvala,et al.  Incremental and Complete Bounded Model Checking for Full PLTL , 2005, CAV.

[9]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[10]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[11]  Gordon J. Pace,et al.  Automatic Conflict Detection on Contracts , 2009, ICTAC.

[12]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[13]  Viktor Schuppan,et al.  Towards a notion of unsatisfiable and unrealizable cores for LTL , 2012, Sci. Comput. Program..

[14]  Michael Fisher,et al.  A Resolution Method for Temporal Logic , 1991, IJCAI.

[15]  Annapaola Marconi,et al.  Synthesis and Composition of Web Services , 2009, SFM.

[16]  Xin Zhou,et al.  Regulations Expressed As Logical Models (REALM) , 2005, JURIX.

[17]  Wil M.P. van der Aalst,et al.  Declarative Specification and Verification of Service Choreographies , 2009 .

[18]  Viktor Schuppan,et al.  Boolean Abstraction for Temporal Logic Satisfiability , 2007, CAV.

[19]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[20]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[21]  Armin Biere,et al.  Multiple State and Single State Tableaux for Combining Local and Global Model Checking , 1999, Correct System Design.

[22]  Cheng Wu,et al.  BPSL Modeler - Visual Notation Language for Intuitive Business Property Reasoning , 2008, Electron. Notes Theor. Comput. Sci..

[23]  Paola Mello,et al.  Declarative specification and verification of service choreographiess , 2010, TWEB.

[24]  Aditya K. Ghose,et al.  Auditing Business Process Compliance , 2007, ICSOC.

[25]  Alin Deutsch,et al.  Artifact systems with data dependencies and arithmetic , 2011, ICDT '11.

[26]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[27]  Frank Dignum,et al.  Designing a Deontic Logic of Deadlines , 2004, DEON.

[28]  Zohar Manna,et al.  A Decision Algorithm for Full Propositional Temporal Logic , 1993, CAV.