Effect of lamellar LPSO phase on mechanical properties and damping capacity in cast magnesium alloys

[1]  A. Khajuria,et al.  The Synergistic Effects among Crystal Orientations, Creep Parameters, Local Strain, Macro–Microdeformation, and Polycrystals’ Hardness of Boron Alloyed P91 Steels , 2022, steel research international.

[2]  R. Wu,et al.  Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg–4Y–2Er–2Zn-0.6Zr alloy , 2021, Materials Science and Engineering: A.

[3]  Jinxing Wang,et al.  Formation of an abnormal texture in Mg-Gd-Y-Zn-Mn alloy and its effect on mechanical properties by altering extrusion parameters , 2021, Materials Science and Engineering: A.

[4]  Jinshan Zhang,et al.  Effects of 14H LPSO phase on the dynamic recrystallization and work hardening behaviors of an extruded Mg–Zn–Y–Mn alloy , 2021 .

[5]  Yangqiu Wang,et al.  The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr and its response to the mechanical properties and damping capacities , 2020 .

[6]  F. Pan,et al.  Development of a novel Mg–Y–Zn–Al–Li alloy with high elastic modulus and damping capacity , 2020 .

[7]  M. Zheng,et al.  Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases , 2020 .

[8]  Y. Xin,et al.  Formation of long-period stacking-ordered (LPSO) structures and microhardness of as-cast Mg-4.5Zn–6Y alloy , 2020 .

[9]  A. Atrens,et al.  Simultaneously improving elastic modulus and damping capacity of extruded Mg-Gd-Y-Zn-Mn alloy via alloying with Si , 2019, Journal of Alloys and Compounds.

[10]  S. Kamado,et al.  Enhancing strength and creep resistance of Mg–Gd–Y–Zn–Zr alloy by substituting Mn for Zr , 2019, Journal of Magnesium and Alloys.

[11]  A. Atrens,et al.  Strain hardening of as-extruded Mg-xZn (x = 1, 2, 3 and 4 wt%) alloys , 2019, Journal of Materials Science & Technology.

[12]  M. Li,et al.  Effect of Zn content on the microstructures, mechanical properties, and damping capacities of Mg–7Gd–3Y–1Nd–0.5Zr based alloys , 2019, Journal of Alloys and Compounds.

[13]  Jing Zhang,et al.  Quantitative analysis on friction stress of hot-extruded AZ31 magnesium alloy at room temperature , 2018, Journal of Materials Science & Technology.

[14]  Song-Jeng Huang,et al.  Enhanced mechanical properties of Mg-Gd-Y-Zn-Mn alloy by tailoring the morphology of long period stacking ordered phase , 2018 .

[15]  F. Pan,et al.  Microstructure evolution, damping capacities and mechanical properties of novel Mg-xAl-0.5Ce (wt%) damping alloys , 2017 .

[16]  Chao Xu,et al.  Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy , 2017, Scientific Reports.

[17]  Jinshan Zhang,et al.  High-performance extruded Mg89Y4Zn2Li5 alloy with deformed LPSO structures plus fine dynamical recrystallized grains , 2016 .

[18]  G. Khalaj,et al.  On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al-Mg alloy , 2016 .

[19]  J. Nie,et al.  Microstructure and mechanical properties of extruded Mg-1Ca-1Zn-0.6Zr alloy , 2016 .

[20]  A. Yasuhara,et al.  Crystal structures of highly-ordered long-period stacking-ordered phases with 18R, 14H and 10H-type stacking sequences in the Mg–Zn–Y system , 2015 .

[21]  F. Jiang,et al.  Microstructure, mechanical and damping properties of Mg-Er-Gd-Zn alloy reinforced with stacking faults , 2015 .

[22]  Jinyu Guan,et al.  Effect of long period stacking ordered structure on mechanical and damping properties of as-cast Mg–Zn–Y–Zr alloy , 2015 .

[23]  H. Nakashima,et al.  Analysis of kink boundaries in deformed synchronized long-period stacking ordered magnesium alloys , 2015 .

[24]  T. Kamiyama,et al.  Neutron Diffraction on LPSO Structure in Mg–Zn–Y Alloys , 2013 .

[25]  Yuman Zhu,et al.  Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys , 2012 .

[26]  F. Pan,et al.  Effect of long period stacking ordered (LPSO) structure on the damping capacities of Mg–Cu–Mn–Zn–Y alloys , 2012 .

[27]  D. Raabe,et al.  The relation between ductility and stacking fault energies in Mg and Mg–Y alloys , 2012 .

[28]  K. Kurzydłowski,et al.  Generalized stacking fault energy in magnesium alloys: Density functional theory calculations , 2012 .

[29]  F. Pan,et al.  Preparation and properties of Mg–Cu–Mn–Zn–Y damping magnesium alloy , 2011 .

[30]  F. Pan,et al.  Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg–Zn–Y–Zr alloys , 2011 .

[31]  S. Zaefferer,et al.  On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys , 2011 .

[32]  F. Pan,et al.  Effects of Y and Zn on mechanical properties and damping capacity of Mg-Cu-Mn alloy , 2010 .

[33]  Xiuliang Ma,et al.  Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure , 2010 .

[34]  Yuman Zhu,et al.  The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys , 2010 .

[35]  K. Hagihara,et al.  Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure , 2010 .

[36]  W. Ding,et al.  A systematic investigation of stacking faults in magnesium via first-principles calculation , 2009 .

[37]  Zi-kui Liu,et al.  Effect of alloying elements on the elastic properties of Mg from first-principles calculations , 2009 .

[38]  M. Weyland,et al.  The building block of long-period structures in Mg–RE–Zn alloys , 2009 .

[39]  Y. Ikuhara,et al.  Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy , 2005 .

[40]  K. Maruyama,et al.  Effects of zinc on creep strength and deformation substructures in Mg–Y alloy , 2004 .

[41]  A. Inoue,et al.  Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM , 2002 .

[42]  V. Vítek Atomic structure of dislocations in intermetallics with close packed structures: a comparative study , 1998 .

[43]  K. Sugimoto,et al.  Effect of Crystal Orientation on Amplitude-Dependent Damping in Magnesium , 1975 .

[44]  R. Nash,et al.  Effect of preferred orientation on the damping capacity of magnesium alloys , 1971 .

[45]  E. Teghtsoonian,et al.  Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip , 1969 .

[46]  E. Teghtsoonian,et al.  Solid solution strengthening of magnesium single crystals—ii the effect of solute on the ease of prismatic slip , 1969 .

[47]  A. Granato,et al.  Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies , 1956 .

[48]  A. Granato,et al.  Theory of Mechanical Damping Due to Dislocations , 1956 .