Functional and Structural Brain Damage in Friedreich's Ataxia

Friedreich's ataxia (FRDA) is a rare hereditary neurodegenerative disorder caused by a GAA repeat expansion in the FXN gene. There is still no cure or quantitative biomarkers reliaby correlating with the progression rate and disease severity. Investigation of functional and structural alterations characterizing white (WM) and gray matter (GM) in FRDA are needed prerequisite to monitor progression and response to treatment. Here we report the results of a multimodal cross-sectional MRI study of FRDA including Voxel-Based Morphometry (VBM), diffusion-tensor imaging (DTI), functional MRI (fMRI), and a correlation analysis with clinical severity scores. Twenty-one early-onset FRDA patients and 18 age-matched healthy controls (HCs) were imaged at 3T. All patients underwent a complete cognitive and clinical assessment with ataxia scales. VBM analysis showed GM volume reduction in FRDA compared to HCs bilaterally in lobules V, VI, VIII (L>R), as well as in the crus of cerebellum, posterior lobe of the vermis, in the flocculi and in the left tonsil. Voxel-wise DTI analysis showed a diffuse fractional anisotropy reduction and mean, radial, axial (AD) diffusivity increase in both infratentorial and supratentorial WM. ROI-based analysis confirmed the results showing differences of the same DTI metrics in cortico-spinal-tracts, forceps major, corpus callosum, posterior thalamic radiations, cerebellar penduncles. Additionally, we observed increased AD in superior (SCP) and middle cerebellar peduncles. The WM findings correlated with age at onset (AAO), short-allelle GAA, and disease severity. The intragroup analysis of fMRI data from right-handed 14 FRDA and 15 HCs showed similar findings in both groups, including activation in M1, insula and superior cerebellar hemisphere (lobules V–VIII). Significant differences emerged only during the non-dominant hand movement, with HCs showing a stronger activation in the left superior cerebellar hemisphere compared to FRDA. Significant correlations were found between AAO and the fMRI activation in cerebellar anterior and posterior lobes, insula and temporal lobe. Our multimodal neuroimaging protocol suggests that MRI is a useful tool to document the extension of the neurological impairment in FRDA.

[1]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[2]  D. Timmann,et al.  Structural characteristics of the central nervous system in Friedreich ataxia: an in vivo spinal cord and brain MRI study , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[3]  G. Egan,et al.  Cerebral compensation during motor function in Friedreich ataxia: The IMAGE‐FRDA study , 2017, Movement disorders : official journal of the Movement Disorder Society.

[4]  D. Timmann,et al.  Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study , 2016, The Lancet Neurology.

[5]  M. Molinari,et al.  Essentials of Cerebellum and Cerebellar Disorders , 2016, Springer International Publishing.

[6]  G. Egan,et al.  Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study , 2016, Journal of Neurology.

[7]  S. Subramony,et al.  Progression of Friedreich ataxia: quantitative characterization over 5 years , 2016, Annals of clinical and translational neurology.

[8]  D. Timmann,et al.  Cognition in Friedreich's ataxia: a behavioral and multimodal imaging study , 2016, Annals of clinical and translational neurology.

[9]  N. Toschi,et al.  Regional Cerebral Disease Progression in Friedreich's Ataxia: A Longitudinal Diffusion Tensor Imaging Study , 2016, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[10]  G. Egan,et al.  Fronto‐cerebellar dysfunction and dysconnectivity underlying cognition in friedreich ataxia: The IMAGE‐FRDA study , 2016, Human brain mapping.

[11]  F. Cendes,et al.  Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich's ataxia , 2016, Movement disorders : official journal of the Movement Disorder Society.

[12]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[13]  Jeremy D. Schmahmann,et al.  Functional Topography of the Human Cerebellum , 2016 .

[14]  S. Raskin,et al.  Diffusion tensor imaging and tract-based spatial statistics analysis in Friedreich's ataxia patients. , 2015, Parkinsonism & related disorders.

[15]  Mark E Ladd,et al.  Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia. , 2015, Brain : a journal of neurology.

[16]  Murali Murugavel,et al.  A longitudinal diffusion tensor imaging study assessing white matter fiber tracts after sports-related concussion. , 2014, Journal of neurotrauma.

[17]  M. Kubicki,et al.  White Matter Changes in Patients with Friedreich Ataxia after Treatment with Erythropoietin , 2014, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[18]  D. Timmann,et al.  Cerebellar pathology in Friedreich's ataxia: Atrophied dentate nuclei with normal iron content , 2014, NeuroImage: Clinical.

[19]  F Cendes,et al.  Dentate nuclei T2 relaxometry is a reliable neuroimaging marker in Friedreich's ataxia , 2014, European journal of neurology.

[20]  M. Schocke,et al.  A longitudinal VBM study monitoring treatment with erythropoietin in patients with Friedreich ataxia , 2014, Acta radiologica short reports.

[21]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[22]  J. Gee,et al.  The Insight ToolKit image registration framework , 2014, Front. Neuroinform..

[23]  J. Bradshaw,et al.  Cognitive Deficits In Friedreich Ataxia Correlate with Micro-structural Changes in Dentatorubral Tract , 2013, The Cerebellum.

[24]  P. Vankan Prevalence gradients of Friedreich's Ataxia and R1b haplotype in Europe co‐localize, suggesting a common Palaeolithic origin in the Franco‐Cantabrian ice age refuge , 2013, Journal of neurochemistry.

[25]  Marek Kubicki,et al.  Radial diffusivity in the cerebellar peduncles correlates with clinical severity in Friedreich ataxia , 2013, Neurological Sciences.

[26]  J. Bradshaw,et al.  A functional MRI study of motor dysfunction in Friedreich's ataxia , 2012, Brain Research.

[27]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[28]  Stefano Diciotti,et al.  Neurodegeneration in friedreich's ataxia is associated with a mixed activation pattern of the brain. A fMRI study , 2012, Human brain mapping.

[29]  J. Bradshaw,et al.  Decreased functional brain activation in Friedreich ataxia using the Simon effect task , 2012, Brain and Cognition.

[30]  David S. Zee,et al.  Cerebellum and Ocular Motor Control , 2011, Front. Neur..

[31]  B. Barbiroli,et al.  Brain diffusion‐weighted imaging in Friedreich's ataxia , 2011, Movement disorders : official journal of the Movement Disorder Society.

[32]  Stefano Diciotti,et al.  Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich's ataxia , 2011, Neuroradiology.

[33]  J. Bradshaw,et al.  Superior Cerebellar Peduncle Atrophy in Friedreich’s Ataxia Correlates with Disease Symptoms , 2011, The Cerebellum.

[34]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[35]  C. Yasuda,et al.  A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia , 2009, Journal of Neurology.

[36]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[37]  D. Manners,et al.  Visual system involvement in patients with Friedreich's ataxia. , 2009, Brain : a journal of neurology.

[38]  Mario Mascalchi,et al.  Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry , 2008, NeuroImage.

[39]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[40]  Brian B. Avants,et al.  High-Dimensional Spatial Normalization of Diffusion Tensor Images Improves the Detection of White Matter Differences: An Example Study Using Amyotrophic Lateral Sclerosis , 2007, IEEE Transactions on Medical Imaging.

[41]  Daniel Rueckert,et al.  Unbiased White Matter Atlas Construction Using Diffusion Tensor Images , 2007, MICCAI.

[42]  B. Castellotti,et al.  Frataxin gene point mutations in Italian Friedreich ataxia patients , 2007, Neurogenetics.

[43]  M. Giannelli,et al.  Brain structural damage in Friedreich’s ataxia , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[44]  Karl J. Friston,et al.  CHAPTER 2 – Statistical parametric mapping , 2007 .

[45]  Andrzej Urbanik,et al.  Brain correlates of right-handedness. , 2007, Acta neurobiologiae experimentalis.

[46]  P. Basser,et al.  A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. , 2006, Journal of magnetic resonance.

[47]  C. Angelini,et al.  Exploring mental status in Friedreich's ataxia: a combined neuropsychological, behavioral and neuroimaging study , 2006, European journal of neurology.

[48]  Lippincott Williams Wilkins,et al.  Scale for the assessment and rating of ataxia: Development of a new clinical scale , 2006, Neurology.

[49]  L. Baliko,et al.  Scale for the assessment and rating of ataxia , 2006, Neurology.

[50]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[51]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[52]  M. Hallett,et al.  Measuring Friedreich ataxia: Interrater reliability of a neurologic rating scale , 2005, Neurology.

[53]  D. Zee,et al.  Relative Atrophy of the Flocculus and Ocular Motor Dysfunction in SCA2 and SCA6 , 2005, Annals of the New York Academy of Sciences.

[54]  J. Gee,et al.  Geodesic estimation for large deformation anatomical shape averaging and interpolation , 2004, NeuroImage.

[55]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[56]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[57]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[58]  Carlo Adolfo Porro,et al.  Bilateral representation of sequential finger movements in human cortical areas , 1999, Neuroscience Letters.

[59]  F. Andermann,et al.  Phenotypic variability in friedreich ataxia: Role of the associated GAA triplet repeat expansion , 1997, Annals of neurology.

[60]  M. Hallett,et al.  International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome , 1997, Journal of the Neurological Sciences.

[61]  P. Patel,et al.  Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion , 1996, Science.

[62]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[63]  A. Harding CLASSIFICATION OF THE HEREDITARY ATAXIAS AND PARAPLEGIAS , 1983, The Lancet.

[64]  A. Harding Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. , 1981, Brain : a journal of neurology.