Asymptotic preserving and time diminishing schemes for rarefied gas dynamic
暂无分享,去创建一个
[1] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[2] Qin Li,et al. Diffusion approximations and domain decomposition method of linear transport equations: Asymptotics and numerics , 2014, J. Comput. Phys..
[3] Giacomo Dimarco,et al. Numerical methods for kinetic equations* , 2014, Acta Numerica.
[4] Qin Li,et al. Half-space kinetic equations with general boundary conditions , 2015, Math. Comput..
[5] Giacomo Dimarco,et al. Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..
[6] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[7] N. Crouseilles,et al. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles , 2012 .
[8] Martin Campos Pinto,et al. Uniform Convergence of a Linearly Transformed Particle Method for the Vlasov-Poisson System , 2016, SIAM J. Numer. Anal..
[9] Stephan Brunner,et al. Collisional delta-f scheme with evolving background for transport time scale simulations , 1999 .
[10] Giacomo Dimarco,et al. Fluid simulations with localized boltzmann upscaling by direct simulation Monte-Carlo , 2010, J. Comput. Phys..
[11] Russel E. Caflisch,et al. A Monte Carlo method with negative particles for Coulomb collisions , 2015, J. Comput. Phys..
[12] Giacomo Dimarco,et al. The Moment Guided Monte Carlo method for the Boltzmann equation , 2012, 1207.1005.
[13] Axel Klar,et al. A particle-particle hybrid method for kinetic and continuum equations , 2009, J. Comput. Phys..
[14] N. Crouseilles,et al. An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .
[15] Jonathan M. Burt,et al. A hybrid particle approach for continuum and rarefied flow simulation , 2009, J. Comput. Phys..
[16] H. Neunzert,et al. On a simulation scheme for the Boltzmann equation , 1986 .
[17] Gregg A Radtke,et al. On efficient simulations of multiscale kinetic transport , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] F. Golse,et al. Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .
[19] Luc Mieussens,et al. Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..
[20] Bokai Yan,et al. A hybrid method with deviational particles for spatial inhomogeneous plasma , 2015, J. Comput. Phys..
[21] Giacomo Dimarco,et al. A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma , 2007, Multiscale Model. Simul..
[22] Giacomo Dimarco,et al. Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations , 2009, SIAM J. Sci. Comput..
[23] R. LeVeque. Numerical methods for conservation laws , 1990 .
[24] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[25] Thomas M. M. Homolle,et al. A low-variance deviational simulation Monte Carlo for the Boltzmann equation , 2007, J. Comput. Phys..
[26] Mohammed Lemou,et al. Relaxed micro-macro schemes for kinetic equations , 2010 .
[27] Francis Filbet,et al. A Hierarchy of Hybrid Numerical Methods for Multiscale Kinetic Equations , 2015, SIAM J. Sci. Comput..
[28] Patrick Le Tallec,et al. Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes , 1997 .
[29] Kenichi Nanbu,et al. Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .
[30] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[31] Stephan Brunner,et al. Linear delta-f simulations of nonlocal electron heat transport , 2000 .
[32] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[33] Giacomo Dimarco,et al. Hybrid Multiscale Methods II. Kinetic Equations , 2008, Multiscale Model. Simul..
[34] Luc Mieussens,et al. A smooth transition model between kinetic and hydrodynamic equations , 2005 .
[35] Giacomo Dimarco,et al. The Moment Guided Monte Carlo Method , 2011 .
[36] Hassan Hassan,et al. Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods , 1996 .
[37] Thomas M. M. Homolle,et al. Low-variance deviational simulation Monte Carlo , 2007 .