Asymptotic preserving and time diminishing schemes for rarefied gas dynamic

In this work, we introduce a new class of numerical schemes for rarefied gas dynamic problems described by collisional kinetic equations. The idea consists in reformulating the problem using a micro-macro decomposition and successively in solving the microscopic part by using asymptotic preserving Monte Carlo methods. We consider two types of decompositions, the first leading to the Euler system of gas dynamics while the second to the Navier-Stokes equations for the macroscopic part. In addition, the particle method which solves the microscopic part is designed in such a way that the global scheme becomes computationally less expensive as the solution approaches the equilibrium state as opposite to standard methods for kinetic equations which computational cost increases with the number of interactions. At the same time, the statistical error due to the particle part of the solution decreases as the system approach the equilibrium state. This causes the method to degenerate to the sole solution of the macroscopic hydrodynamic equations (Euler or Navier-Stokes) in the limit of infinite number of collisions. In a last part, we will show the behaviors of this new approach in comparisons to standard Monte Carlo techniques for solving the kinetic equation by testing it on different problems which typically arise in rarefied gas dynamic simulations.

[1]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[2]  Qin Li,et al.  Diffusion approximations and domain decomposition method of linear transport equations: Asymptotics and numerics , 2014, J. Comput. Phys..

[3]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[4]  Qin Li,et al.  Half-space kinetic equations with general boundary conditions , 2015, Math. Comput..

[5]  Giacomo Dimarco,et al.  Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..

[6]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[7]  N. Crouseilles,et al.  Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles , 2012 .

[8]  Martin Campos Pinto,et al.  Uniform Convergence of a Linearly Transformed Particle Method for the Vlasov-Poisson System , 2016, SIAM J. Numer. Anal..

[9]  Stephan Brunner,et al.  Collisional delta-f scheme with evolving background for transport time scale simulations , 1999 .

[10]  Giacomo Dimarco,et al.  Fluid simulations with localized boltzmann upscaling by direct simulation Monte-Carlo , 2010, J. Comput. Phys..

[11]  Russel E. Caflisch,et al.  A Monte Carlo method with negative particles for Coulomb collisions , 2015, J. Comput. Phys..

[12]  Giacomo Dimarco,et al.  The Moment Guided Monte Carlo method for the Boltzmann equation , 2012, 1207.1005.

[13]  Axel Klar,et al.  A particle-particle hybrid method for kinetic and continuum equations , 2009, J. Comput. Phys..

[14]  N. Crouseilles,et al.  An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .

[15]  Jonathan M. Burt,et al.  A hybrid particle approach for continuum and rarefied flow simulation , 2009, J. Comput. Phys..

[16]  H. Neunzert,et al.  On a simulation scheme for the Boltzmann equation , 1986 .

[17]  Gregg A Radtke,et al.  On efficient simulations of multiscale kinetic transport , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[19]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[20]  Bokai Yan,et al.  A hybrid method with deviational particles for spatial inhomogeneous plasma , 2015, J. Comput. Phys..

[21]  Giacomo Dimarco,et al.  A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma , 2007, Multiscale Model. Simul..

[22]  Giacomo Dimarco,et al.  Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations , 2009, SIAM J. Sci. Comput..

[23]  R. LeVeque Numerical methods for conservation laws , 1990 .

[24]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[25]  Thomas M. M. Homolle,et al.  A low-variance deviational simulation Monte Carlo for the Boltzmann equation , 2007, J. Comput. Phys..

[26]  Mohammed Lemou,et al.  Relaxed micro-macro schemes for kinetic equations , 2010 .

[27]  Francis Filbet,et al.  A Hierarchy of Hybrid Numerical Methods for Multiscale Kinetic Equations , 2015, SIAM J. Sci. Comput..

[28]  Patrick Le Tallec,et al.  Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes , 1997 .

[29]  Kenichi Nanbu,et al.  Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .

[30]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[31]  Stephan Brunner,et al.  Linear delta-f simulations of nonlocal electron heat transport , 2000 .

[32]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[33]  Giacomo Dimarco,et al.  Hybrid Multiscale Methods II. Kinetic Equations , 2008, Multiscale Model. Simul..

[34]  Luc Mieussens,et al.  A smooth transition model between kinetic and hydrodynamic equations , 2005 .

[35]  Giacomo Dimarco,et al.  The Moment Guided Monte Carlo Method , 2011 .

[36]  Hassan Hassan,et al.  Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods , 1996 .

[37]  Thomas M. M. Homolle,et al.  Low-variance deviational simulation Monte Carlo , 2007 .