Vibrational Dichroism of Chiral Valley Phonons.

Valley degrees of freedom in transition metal dichalcogenides thoroughly influence electron-phonon coupling and its nonequilibrium dynamics. We conducted a first-principles study of the quantum kinetics of chiral phonons following valley-selective carrier excitation with circularly polarized light. Our numerical investigations treat the ultrafast dynamics of electrons and phonons on equal footing within a parameter-free ab initio framework. We report the emergence of valley-polarized phonon populations in monolayer MoS2 that can be selectively excited at either the K or K' valleys depending on the light helicity. The resulting vibrational state is characterized by a distinctive chirality, which lifts time-reversal symmetry of the lattice on transient time scales. We show that chiral valley phonons can further lead to fingerprints of vibrational dichroism detectable by ultrafast diffuse scattering and persist beyond 10 ps. The valley polarization of nonequilibrium phonon populations could be exploited as an information carrier, thereby extending the paradigm of valleytronics to the domain of vibrational excitations.

[1]  B. Siwick,et al.  Ultrafast phonon diffuse scattering as a tool for observing chiral phonons in monolayer hexagonal lattices , 2023, Physical Review B.

[2]  Lifa Zhang,et al.  Effective magnetic fields induced by chiral phonons , 2022, Physical Review B.

[3]  P. Ajayan,et al.  K-point longitudinal acoustic phonons are responsible for ultrafast intervalley scattering in monolayer MoSe2 , 2022, Nature Communications.

[4]  B. Monserrat,et al.  Phonon-Limited Valley Polarization in Transition-Metal Dichalcogenides. , 2022, Physical review letters.

[5]  M. Centurion,et al.  Ultrafast electron diffraction: Visualizing dynamic states of matter , 2022, Reviews of Modern Physics.

[6]  Syed Ali Hassan,et al.  Direct View of Phonon Dynamics in Atomically Thin MoS2. , 2022, Nano letters.

[7]  G. Schönhense,et al.  Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS_{2}. , 2022, Physical Review Letters.

[8]  F. Caruso,et al.  Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation , 2022, Advances in Physics: X.

[9]  Yiming Pan,et al.  Chirality of Valley Excitons in Monolayer Transition-Metal Dichalcogenides. , 2021, The journal of physical chemistry letters.

[10]  F. Giustino,et al.  Multiphonon diffuse scattering in solids from first principles: Application to layered crystals and two-dimensional materials , 2021, Physical Review B.

[11]  F. Giustino,et al.  Efficient First-Principles Methodology for the Calculation of the All-Phonon Inelastic Scattering in Solids. , 2021, Physical review letters.

[12]  B. Gu,et al.  Valley Depolarization Dynamics in Monolayer Transition-Metal Dichalcogenides: Role of the Satellite Valley. , 2021, Nano letters.

[13]  F. Caruso Nonequilibrium Lattice Dynamics in Monolayer MoS2. , 2021, The journal of physical chemistry letters.

[14]  M. Bernardi,et al.  Toward precise simulations of the coupled ultrafast dynamics of electrons and atomic vibrations in materials , 2020, Physical Review Research.

[15]  P. Narang,et al.  Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets , 2020, Physical Review Research.

[16]  F. Caruso,et al.  Accessing the Anisotropic Nonthermal Phonon Populations in Black Phosphorus , 2020, Nano letters.

[17]  A. Bostwick,et al.  Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy , 2020, Nature Materials.

[18]  Bohm-Jung Yang,et al.  Phonon angular momentum Hall effect. , 2020, Nano letters.

[19]  D. Smirnov,et al.  Momentum-Dark Intervalley Exciton in Monolayer Tungsten Diselenide Brightened via Chiral Phonon. , 2019, ACS nano.

[20]  D. Lizzit,et al.  80% Valley Polarization of Free Carriers in Singly Oriented Single-Layer WS_{2} on Au(111). , 2019, Physical review letters.

[21]  Nicola Marzari,et al.  Wannier90 as a community code: new features and applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  F. Caruso,et al.  Ultrafast Hot Phonon Dynamics in MgB_{2} Driven by Anisotropic Electron-Phonon Coupling. , 2019, Physical review letters.

[23]  Yuanyue Liu,et al.  What Limits the Intrinsic Mobility of Electrons and Holes in Two Dimensional Metal Dichalcogenides? , 2018, Journal of the American Chemical Society.

[24]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[25]  R. Sundararaman,et al.  Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides. , 2018, Nano letters.

[26]  Y. Wang,et al.  Observation of chiral phonons , 2018, Science.

[27]  Y. Iwasa,et al.  Exciton Hall effect in monolayer MoS2. , 2017, Nature materials.

[28]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  M. Chan,et al.  Theory of Thermal Relaxation of Electrons in Semiconductors. , 2017, Physical review letters.

[30]  M. Sutton,et al.  Mapping momentum-dependent electron-phonon coupling and non-equilibrium phonon dynamics with ultrafast electron diffuse scattering , 2017, EPJ Web of Conferences.

[31]  C. Stampfer,et al.  Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe2. , 2017, Nano letters.

[32]  Andrea Marini,et al.  Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2. , 2017, Nano letters.

[33]  C. Robert,et al.  Gate-Controlled Spin-Valley Locking of Resident Carriers in WSe_{2} Monolayers. , 2017, Physical review letters.

[34]  Marco Bernardi,et al.  Ultrafast Hot Carrier Dynamics in GaN and Its Impact on the Efficiency Droop. , 2017, Nano letters.

[35]  T. Brumme,et al.  Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe_{2}. , 2017, Physical review letters.

[36]  Tony F. Heinz,et al.  Optical manipulation of valley pseudospin , 2016, Nature Physics.

[37]  A. Knorr,et al.  Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2. , 2016, Nano letters.

[38]  Feliciano Giustino,et al.  EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions , 2016, Comput. Phys. Commun..

[39]  L. Wirtz,et al.  Temperature-dependent excitonic effects in the optical properties of single-layer MoS 2 , 2016, 1604.00943.

[40]  Eva A. A. Pogna,et al.  Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques , 2015 .

[41]  Lifa Zhang,et al.  Chiral phonons at high-symmetry points in monolayer hexagonal lattices. , 2015, Physical review letters.

[42]  R. Ernstorfer,et al.  Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation , 2015, 1507.03743.

[43]  M. Pimenta,et al.  Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. , 2015, Physical review letters.

[44]  X. Qiao,et al.  Valley depolarization in monolayer WSe2 , 2015, Scientific Reports.

[45]  A. M. van der Zande,et al.  Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. , 2014, Physical review letters.

[46]  K. W. Kim,et al.  Exciton valley relaxation in a single layer of WS 2 measured by ultrafast spectroscopy , 2014 .

[47]  X. Marie,et al.  Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers , 2014, 1407.5862.

[48]  Aaron M. Jones,et al.  Magnetic control of valley pseudospin in monolayer WSe2 , 2014, Nature Physics.

[49]  Lain-Jong Li,et al.  Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers , 2014, Science.

[50]  Jing Kong,et al.  Valley-selective optical Stark effect in monolayer WS2. , 2014, Nature materials.

[51]  D. Ralph,et al.  Breaking of valley degeneracy by magnetic field in monolayer MoSe2. , 2014, Physical review letters.

[52]  S. Louie,et al.  ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon. , 2014, Physical review letters.

[53]  Xiaodong Li,et al.  Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides , 2014, 1406.4569.

[54]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[55]  Schuller,et al.  Time-resolved Kerr rotation spectroscopy of valley dynamics in single-layer MoS2 , 2014, 1404.7674.

[56]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[57]  A. Balocchi,et al.  Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.

[58]  Linyou Cao,et al.  Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.

[59]  P. Tan,et al.  Carrier and polarization dynamics in monolayer MoS2. , 2013, Physical review letters.

[60]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[61]  Xiaodong Li,et al.  Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles , 2013, 1301.7709.

[62]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[63]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[64]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[65]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[66]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[67]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[68]  Allen,et al.  Theory of thermal relaxation of electrons in metals. , 1987, Physical review letters.