User-Centered Adaptive Information Retrieval
暂无分享,去创建一个
[1] William I. Gasarch,et al. A Survey on Private Information Retrieval (Column: Computational Complexity) , 2004, Bull. EATCS.
[2] Krishna Bharat. SearchPad: explicit capture of search context to support Web search , 2000, Comput. Networks.
[3] Rafael Accorsi,et al. Personalization in privacy-aware highly dynamic systems , 2006, CACM.
[4] Rakesh Agrawal,et al. Privacy-preserving data mining , 2000, SIGMOD 2000.
[5] Susan T. Dumais,et al. Optimizing search by showing results in context , 2001, CHI.
[6] ChengXiang Zhai,et al. A session-based search engine , 2004, SIGIR '04.
[7] Timos Sellis,et al. Sailing the web with captain Nemo: a personalized metasearch engine , 2005, ICML 2005.
[8] Thorsten Joachims,et al. Accurately Interpreting Clickthrough Data as Implicit Feedback , 2017 .
[9] Clare-Marie Karat,et al. Usable privacy and security for personal information management , 2006, CACM.
[10] Donna K. Harman,et al. Relevance feedback revisited , 1992, SIGIR '92.
[11] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.
[12] W. Bruce Croft,et al. Relevance Feedback and Personalization: A Language Modeling Perspective , 2001, DELOS.
[13] ChengXiang Zhai,et al. Exploiting Personal Search History to Improve Search Accuracy , 2006 .
[14] Amit Singhal,et al. Pivoted document length normalization , 1996, SIGIR 1996.
[15] DumaisSusan,et al. Evaluating implicit measures to improve web search , 2005 .
[16] Paolo Ferragina,et al. A personalized search engine based on Web‐snippet hierarchical clustering , 2005, WWW '05.
[17] ChengXiang Zhai,et al. Implicit user modeling for personalized search , 2005, CIKM '05.
[18] Dale Schuurmans,et al. Dynamic Web log session identification with statistical language models , 2004, J. Assoc. Inf. Sci. Technol..
[19] Yen-Jen Oyang,et al. Query-Session-Based Term Suggestion for Interactive Web Search , 2001, WWW Posters.
[20] Wei Zhang,et al. An Iterative Implicit Feedback Approach to Personalized Search , 2006, ACL.
[21] John D. Lafferty,et al. Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.
[22] Ehud Rivlin,et al. Placing search in context: the concept revisited , 2002, TOIS.
[23] Charles L. A. Clarke,et al. Overview of the TREC 2004 Terabyte Track | NIST , 2005 .
[24] Claudio Carpineto,et al. Mobile Clustering Engine , 2006, ECIR.
[25] Masatoshi Yoshikawa,et al. Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.
[26] Xiang Ji,et al. Document clustering with prior knowledge , 2006, SIGIR.
[27] Charu C. Aggarwal,et al. On the design and quantification of privacy preserving data mining algorithms , 2001, PODS.
[28] David Hawking,et al. Overview of the TREC 2003 Web Track , 2003, TREC.
[29] Susan T. Dumais,et al. Fast, Flexible Filtering with Phlat — Personal Search and Organization Made Easy , 2006 .
[30] Nicholas J. Belkin,et al. Ask for Information Retrieval: Part I. Background and Theory , 1997, J. Documentation.
[31] Marti A. Hearst,et al. Reexamining the cluster hypothesis: scatter/gather on retrieval results , 1996, SIGIR '96.
[32] Susan T. Dumais,et al. Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.
[33] Karen Spärck Jones. Search Term Relevance Weighting given Little Relevance Information , 1997, J. Documentation.
[34] Stephen E. Robertson,et al. Okapi/Keenbow at TREC-8 , 1999, TREC.
[35] Stephen E. Robertson,et al. Microsoft Cambridge at TREC-12: HARD track , 2003, TREC.
[36] J. J. Rocchio,et al. Relevance feedback in information retrieval , 1971 .
[37] David D. Lewis,et al. Heterogeneous Uncertainty Sampling for Supervised Learning , 1994, ICML.
[38] Oren Etzioni,et al. Grouper: A Dynamic Clustering Interface to Web Search Results , 1999, Comput. Networks.
[39] Greg Schohn,et al. Less is More: Active Learning with Support Vector Machines , 2000, ICML.
[40] Charles L. A. Clarke,et al. Overview of the TREC 2004 Terabyte Track , 2004, TREC.
[41] Peter J. Rousseeuw,et al. Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .
[42] Donna K. Harman,et al. Results and Challenges in Web Search Evaluation , 1999, Comput. Networks.
[43] Ryen W. White,et al. Evaluating implicit feedback models using searcher simulations , 2005, TOIS.
[44] Gerard Salton,et al. A vector space model for automatic indexing , 1975, CACM.
[45] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[46] Mark Claypool,et al. Implicit interest indicators , 2001, IUI '01.
[47] Nicholas J. Belkin,et al. Detecting Document Genre for Personalization of Information Retrieval , 2006, Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06).
[48] Ryen W. White,et al. A study of factors affecting the utility of implicit relevance feedback , 2005, SIGIR '05.
[49] S. Robertson. The probability ranking principle in IR , 1997 .
[50] Andrei Broder,et al. A taxonomy of web search , 2002, SIGF.
[51] Gordon Bell,et al. MyLifeBits: fulfilling the Memex vision , 2002, MULTIMEDIA '02.
[52] Wei-Ying Ma,et al. Learning to cluster web search results , 2004, SIGIR '04.
[53] Daphne Koller,et al. Active learning: theory and applications , 2001 .
[54] William A. Gale,et al. A sequential algorithm for training text classifiers , 1994, SIGIR '94.
[55] Ryen W. White,et al. A Simulated Study of Implicit Feedback Models , 2004, ECIR.
[56] Gerard Salton,et al. Improving Retrieval Performance by Relevance Feedback , 1997 .
[57] Pedro M. Domingos,et al. A machine learning approach to web personalization , 2002 .
[58] Michael McGill,et al. Introduction to Modern Information Retrieval , 1983 .
[59] Djoerd Hiemstra,et al. Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002 , 2003, SIGF.
[60] Yi Zhang,et al. Exploration and Exploitation in Adaptive Filtering Based on Bayesian Active Learning , 2003, ICML.
[61] Nicholas J. Belkin,et al. Display time as implicit feedback: understanding task effects , 2004, SIGIR '04.
[62] Nicholas J. Belkin,et al. Does Familiarity Breed Content? Taking Account of Familiarity with a Topic in Personalizing Information Retrieval , 2006, Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06).
[63] Jaime Teevan,et al. Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.
[64] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[65] Kristian J. Hammond,et al. User interactions with everyday applications as context for just-in-time information access , 2000, IUI '00.
[66] W. Bruce Croft,et al. Evaluation of an inference network-based retrieval model , 1991, TOIS.
[67] Santosh S. Vempala,et al. A divide-and-merge methodology for clustering , 2005, PODS '05.
[68] Daphne Koller,et al. Active Learning for Parameter Estimation in Bayesian Networks , 2000, NIPS.
[69] Pattie Maes,et al. Just-in-time information retrieval , 2000 .
[70] Xiaojun Jenny Yuan,et al. Supporting Multiple Information-Seeking Strategies in a Single System Framework , 2006, NAACL.
[71] Jon Kleinberg,et al. Authoritative sources in a hyperlinked environment , 1999, SODA '98.
[72] Filip Radlinski,et al. Query chains: learning to rank from implicit feedback , 2005, KDD '05.
[73] Xuehua Shen,et al. Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.
[74] David Lewis,et al. Active by Accident: Relevance Feedback in Information Retrieval , 1995 .
[75] Geoffrey Nunberg. As Google Goes, So Goes the Nation , 2003 .
[76] Hava T. Siegelmann,et al. Active Information Retrieval , 2001, NIPS.
[77] Jennifer Widom,et al. Vision Paper: Enabling Privacy for the Paranoids , 2004, VLDB.
[78] ChengXiang Zhai,et al. Exploiting query history for document ranking in interactive information retrieval , 2003, SIGIR '03.
[79] Andrew McCallum,et al. Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.
[80] Tsuhan Chen,et al. An active learning framework for content-based information retrieval , 2002, IEEE Trans. Multim..
[81] Tom M. Mitchell,et al. Text clustering with extended user feedback , 2006, SIGIR.
[82] Andrew McCallum,et al. Toward Optimal Active Learning through Sampling Estimation of Error Reduction , 2001, ICML.
[83] ChengXiang Zhai,et al. Risk minimization and language modeling in text retrieval dissertation abstract , 2002, SIGF.
[84] Rajeev Motwani,et al. The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.
[85] Norbert Fuhr,et al. Probabilistic Models in Information Retrieval , 1992, Comput. J..
[86] Eugene Volokh,et al. Personalization and privacy , 2000, CACM.
[87] David A. Cohn,et al. Active Learning with Statistical Models , 1996, NIPS.
[88] Peter Ingwersen,et al. Information retrieval in context: IRiX , 2005, SIGF.
[89] Jennifer Widom,et al. Scaling personalized web search , 2003, WWW '03.
[90] Paul Over,et al. The TREC 2001 Interactive Track Report , 2001, TREC.
[91] Massimo Barbaro,et al. A Face Is Exposed for AOL Searcher No , 2006 .
[92] Latanya Sweeney,et al. k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[93] Kamal Nigamyknigam,et al. Employing Em in Pool-based Active Learning for Text Classiication , 1998 .
[94] Hinrich Schütze,et al. Personalized search , 2002, CACM.
[95] Steve Fox,et al. Evaluating implicit measures to improve web search , 2005, TOIS.
[96] ChengXiang Zhai,et al. Active Feedback - UIUC TREC-2003 HARD Experiments , 2003, TREC.