Preparation of laser-accelerated proton beams for radiobiological applications

Abstract This paper presents the concept of transport and filtering of laser-accelerated proton pulses used for the first cell irradiation experiments performed with the Dresden 150 TW laser DRACO. Based on a simple non-focusing magnetic dipole equipped with two apertures the concept makes use of an energy dependent angular asymmetry of the proton spectra. For micron thin target foils protons of interest with energies above 7 MeV are observed to be significantly offset from target normal where low energy emission is dominantly centered. As the effect can be controlled via the target rotation with respect to the incoming light, it can be used to optimize the transport efficiency for high energy protons while simultaneously suppressing background radiation.