Path Following and Empirical Bayes Model Selection for Sparse Regression
暂无分享,去创建一个
[1] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[2] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[3] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[4] Kenneth Lange,et al. Numerical analysis for statisticians , 1999 .
[5] Christian P. Robert. Numerical Analysis for Statisticians, Second Edition by Kenneth Lange , 2011 .
[6] M. Yuan,et al. Efficient Empirical Bayes Variable Selection and Estimation in Linear Models , 2005 .
[7] Wenjiang J. Fu. Penalized Regressions: The Bridge versus the Lasso , 1998 .
[8] D. Hunter,et al. Variable Selection using MM Algorithms. , 2005, Annals of statistics.
[9] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[10] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[11] Hua Zhou,et al. A Generic Path Algorithm for Regularized Statistical Estimation , 2012, Journal of the American Statistical Association.
[12] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[13] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[14] D. Donoho,et al. Atomic Decomposition by Basis Pursuit , 2001 .
[15] Artin Armagan,et al. Variational Bridge Regression , 2009, AISTATS.
[16] Mee Young Park,et al. L1‐regularization path algorithm for generalized linear models , 2007 .
[17] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[18] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[19] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[20] Cun-Hui Zhang,et al. The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.
[21] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[22] Yichao Wu,et al. An ordinary differential equation-based solution path algorithm , 2011, Journal of nonparametric statistics.
[23] Chenlei Leng,et al. Unified LASSO Estimation by Least Squares Approximation , 2007 .
[24] Jaeyong Lee,et al. GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.
[25] H. Akaike. A new look at the statistical model identification , 1974 .
[26] Ying Xiong. Nonlinear Optimization , 2014 .
[27] K. Lange,et al. Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.
[28] Runze Li,et al. Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.
[29] K. Lange,et al. A Path Algorithm for Constrained Estimation , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[30] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[31] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[32] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[33] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[34] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[35] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[36] A. Ruszczynski,et al. Nonlinear Optimization , 2006 .
[37] M. R. Osborne,et al. A new approach to variable selection in least squares problems , 2000 .
[38] T. Hastie,et al. SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.