Smooth Shape‐Aware Functions with Controlled Extrema

Functions that optimize Laplacian‐based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points, which often causes smoothness problems. For this reason, many applications optimize higher‐order Laplacian energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but lose the maximum principle and show oscillations. In this work, we identify characteristic artifacts caused by spurious local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for fast handle‐based shape deformation, controllable color diffusion, and topologically‐constrained data smoothing.

[1]  John Snyder,et al.  Freeform vector graphics with controlled thin-plate splines , 2011, ACM Trans. Graph..

[2]  Jirí Zára,et al.  Geometric skinning with approximate dual quaternion blending , 2008, TOGS.

[3]  JacobsonAlec,et al.  Smooth Shape-Aware Functions with Controlled Extrema , 2012 .

[4]  Scott Schaefer,et al.  Image deformation using moving least squares , 2006, ACM Trans. Graph..

[5]  Jack Snoeyink,et al.  Simplifying flexible isosurfaces using local geometric measures , 2004, IEEE Visualization 2004.

[6]  Oscar Kin-Chung Au,et al.  Handle-aware isolines for scalable shape editing , 2007, SIGGRAPH 2007.

[7]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[8]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[9]  S. Gortler,et al.  3D Deformation Using Moving Least Squares , 2007 .

[10]  Dani Lischinski,et al.  Colorization using optimization , 2004, ACM Trans. Graph..

[11]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[13]  Todor Georgiev Photoshop Healing Brush : a Tool for Seamless Cloning , 2004 .

[14]  Olga Sorkine-Hornung,et al.  Topology‐based Smoothing of 2D Scalar Fields with C1‐Continuity , 2010, Comput. Graph. Forum.

[15]  Raif M. Rustamov,et al.  Multiscale Biharmonic Kernels , 2011, Comput. Graph. Forum.

[16]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[17]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[18]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[19]  R. Forman Morse Theory for Cell Complexes , 1998 .

[20]  Hans-Peter Seidel,et al.  Higher Order Barycentric Coordinates , 2008, Comput. Graph. Forum.

[21]  Michael Garland,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..

[22]  Christian Oliver Paschereit,et al.  Spatiotemporal Characterization of a Conical Swirler Flow Field Under Strong Forcing , 2009 .

[23]  Jovan Popovic,et al.  Automatic rigging and animation of 3D characters , 2007, ACM Trans. Graph..

[24]  Olga Sorkine-Hornung,et al.  Stretchable and Twistable Bones for Skeletal Shape Deformation , 2011, ACM Trans. Graph..

[25]  Daniel Cohen-Or,et al.  To appear in the ACM SIGGRAPH conference proceedings Handle-Aware Isolines for Scalable Shape Editing , 2022 .

[26]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[27]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[28]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[29]  Kun Zhou,et al.  Subspace gradient domain mesh deformation , 2006, ACM Trans. Graph..

[30]  Bernd Hamann,et al.  A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[31]  Olga Sorkine-Hornung,et al.  Context‐Aware Skeletal Shape Deformation , 2007, Comput. Graph. Forum.

[32]  Olga Sorkine-Hornung,et al.  Mixed Finite Elements for Variational Surface Modeling , 2010, Comput. Graph. Forum.

[33]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[34]  Richard K. Beatson,et al.  Smooth surface reconstruction from noisy range data , 2003, GRAPHITE '03.

[35]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[36]  Pascal Barla,et al.  Diffusion curves: a vector representation for smooth-shaded images , 2008, ACM Trans. Graph..

[37]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[38]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[39]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[40]  Yotam I. Gingold,et al.  Controlled-topology filtering , 2006, SPM '06.

[41]  Daniel Thalmann,et al.  Joint-dependent local deformations for hand animation and object grasping , 1989 .

[42]  Josiah Manson,et al.  Moving Least Squares Coordinates , 2010, Comput. Graph. Forum.

[43]  Christoph H. Lampert,et al.  Enforcing topological constraints in random field image segmentation , 2011, CVPR 2011.

[44]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[45]  Youyi Zheng,et al.  Mesh Decomposition with Cross‐Boundary Brushes , 2010, Comput. Graph. Forum.

[46]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[47]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[48]  Daniel Cohen-Or,et al.  GPU-assisted positive mean value coordinates for mesh deformations , 2007, Symposium on Geometry Processing.