U‐Pb Detrital Zircon Analysis – Results of an Inter‐laboratory Comparison

Inter-laboratory comparison of laser ablation ICP-MS and SIMS U-Pb dating of synthetic detrital zircon samples provides an insight into the state-of-the art of sedimentary provenance studies. Here, we report results obtained from ten laboratories that routinely perform this type of work. The achieved level of bias was mostly within ± 2% relative to the ID-TIMS U-Pb ages of zircons in the detrital sample, and the variation is likely to be attributed to variable Pb/U elemental fractionation due to zircon matrix differences between the samples and the reference materials used for standardisation. It has been determined that ~ 5% age difference between adjacent age peaks is currently at the limit of what can be routinely resolved by the in situ dating of detrital zircon samples. Precision of individual zircon age determination mostly reflects the data reduction and procedures of measurement uncertainty propagation, and it is largely independent of the instrumentation, analytical technique and reference samples used for standardisation. All laboratories showed a bias towards selection of larger zircon grains for analysis. The experiment confirms the previously published estimates of the minimum number of grains that have to be analysed in order to detect minor zircon age populations in detrital samples. Une comparaison inter-laboratoires de datation U-Pb d'echantillons de zircons detritiques de synthese par les methodes d'ablation laser ICP-MS et SIMS donne un apercu de l'etat de l'art des etudes de provenance sedimentaire. Nous presentons ici les resultats obtenus par dix laboratoires qui effectuent regulierement ce type de travail. Le niveau de biais atteint etait compris dans l'intervalle ± 2% par rapport aux âges U-Pb ID-TIMS des zircons de l'echantillon detritique et la variation peut certainement etre attribue a un fractionnement elementaire Pb/U variable relie a des differences de matrices entre les zircons des echantillons et les zircons de reference utilises pour la normalisation. Il a ete determine qu'environ 5% de difference d'âge entre les pics d'âge adjacents est actuellement a la limite de ce qui peut etre resolu en mode routine par la datation in situ d'echantillons de zircons detritiques. La precision de la determination de l'âge de zircon individuel reflete principalement la reduction des donnees et les procedures de mesure de la propagation de l'incertitude, et elle est largement independante de l'instrumentation, de la technique d'analyse et des echantillons de reference utilises pour la standardisation. Tous les laboratoires ont montre un biais vers la selection des plus gros grains de zircon pour l'analyse. L'experience confirme les estimations precedemment publiees sur le nombre minimum de grains qui doivent etre analyses afin de detecter les populations mineures d'âge de zircons dans les echantillons detritiques.

[1]  J. Hellstrom,et al.  Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction , 2010 .

[2]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[3]  J. F. Wilson,et al.  A search for ancient detrital zircons in Zimbabwean sediments , 1988, Journal of the Geological Society.

[4]  T. Krogh A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations , 1973 .

[5]  J. D. Miller,et al.  Precise U‐Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System , 1993 .

[6]  J. Ketchum,et al.  Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology , 2001 .

[7]  J. Sláma,et al.  Effects of sampling and mineral separation on accuracy of detrital zircon studies , 2012 .

[8]  A. Gerdes,et al.  Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS , 2009 .

[9]  W. Compston,et al.  U‐Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass‐resolution ion microprobe , 1984 .

[10]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[11]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[12]  P. Vermeesch How many grains are needed for a provenance study , 2004 .

[13]  I. Campbell,et al.  Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon , 2012 .

[14]  P. Link,et al.  Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode , 2005 .

[15]  T. Andersen Correction of common lead in U-Pb analyses that do not report 204Pb , 2002 .

[16]  D. Günther,et al.  Review of the State-of-the-Art of Laser Ablation Inductively Coupled Plasma Mass Spectrometry , 2011, Applied spectroscopy.

[17]  G. Gehrels,et al.  Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry , 2008 .

[18]  T. Andersen Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation , 2005 .

[19]  M. Horstwood Data reduction strategies, uncertainty assessment and resolution of LA-(MC-)ICP-MS isotope data , 2008 .

[20]  U. Klötzli,et al.  Accuracy of Laser Ablation U‐Pb Zircon Dating: Results from a Test Using Five Different Reference Zircons , 2009 .

[21]  F. Corfu U–Pb Age, Setting and Tectonic Significance of the Anorthosite–Mangerite–Charnockite–Granite Suite, Lofoten–Vesterålen, Norway , 2004 .

[22]  R. Pedersen,et al.  U—Pb ages of nepheline syenite pegmatites from the Seiland Magmatic Province, N Norway , 1989 .

[23]  T. Krogh,et al.  Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique , 1982 .

[24]  R. Wirth,et al.  Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon—implications for elemental fractionation during ICP-MS analysis , 2005 .

[25]  M. Whitehouse,et al.  Assigning Dates to Thin Gneissic Veins in High-Grade Metamorphic Terranes: A Cautionary Tale from Akilia, Southwest Greenland , 2004 .

[26]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[27]  F. Corfu,et al.  Measurement of SIMS Instrumental Mass Fractionation of Pb Isotopes During Zircon Dating , 2009 .

[28]  R. Korsch,et al.  The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards , 2003 .