Computational Conformal Geometric Methods for Vision

[1]  Yalin Wang,et al.  Intrinsic 3D Dynamic Surface Tracking based on Dynamic Ricci Flow and Teichmüller Map , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[2]  U. Pinkall,et al.  Discrete conformal maps and ideal hyperbolic polyhedra , 2010, 1005.2698.

[3]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[4]  Shing-Tung Yau,et al.  Computing Fenchel-Nielsen Coordinates in Teichmüller Shape Space , 2009, Commun. Inf. Syst..

[5]  Tsz Wai Wong,et al.  Computation of Quasi-Conformal Surface Maps Using Discrete Beltrami Flow , 2014, SIAM J. Imaging Sci..

[6]  Feng Luo,et al.  Variational principles for discrete surfaces , 2008 .

[7]  D. Glickenstein,et al.  Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds , 2009, 0906.1560.

[8]  Lok Ming Lui,et al.  Brain Surface Conformal Parameterization Using Riemann Surface Structure , 2007, IEEE Transactions on Medical Imaging.

[9]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[10]  F. Luo,et al.  Convergence of discrete conformal geometry and computation of uniformization maps , 2019, Asian Journal of Mathematics.

[11]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[12]  M. Zhang,et al.  Dynamic unified surface Ricci flow , 2016 .

[13]  Lok Ming Lui,et al.  Convergence of an iterative algorithm for Teichmüller maps via harmonic energy optimization , 2015, Math. Comput..

[14]  Xu Wang,et al.  Brain morphometry on congenital hand deformities based on Teichmüller space theory , 2015, Comput. Aided Des..

[15]  Wei Zeng,et al.  Generalized Koebe's method for conformal mapping multiply connected domains , 2009, Symposium on Solid and Physical Modeling.

[16]  Wei Zeng,et al.  The unified discrete surface Ricci flow , 2014, Graph. Model..

[17]  Wei Zeng,et al.  Ricci Flow for 3D Shape Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[18]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[19]  Wei Zeng,et al.  Optimal Mass Transport for Shape Matching and Comparison , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Paul M. Thompson,et al.  BRAIN SURFACE CONFORMAL PARAMETERIZATION , 2022 .

[21]  Lok Ming Lui,et al.  Optimization of Surface Registrations Using Beltrami Holomorphic Flow , 2010, J. Sci. Comput..

[22]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[23]  Computing Extremal Teichmüller Map of Multiply-Connected Domains Via Beltrami Holomorphic Flow , 2014, J. Sci. Comput..

[24]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[25]  Shing-Tung Yau,et al.  Slit Map: Conformal Parameterization for Multiply Connected Surfaces , 2008, GMP.

[26]  Wei Zeng,et al.  Computing Teichmuller Shape Space , 2009, IEEE Transactions on Visualization and Computer Graphics.

[27]  GuXianfeng,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003 .

[28]  Wei Zeng,et al.  Supine and Prone Colon Registration Using Quasi-Conformal Mapping , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  Arie E. Kaufman,et al.  Corresponding Supine and Prone Colon Visualization Using Eigenfunction Analysis and Fold Modeling , 2018, IEEE Transactions on Visualization and Computer Graphics.

[30]  Shing-Tung Yau,et al.  Computational Conformal Geometry , 2016 .

[31]  Shing-Tung Yau,et al.  Optimal Global Conformal Surface Parameterization for Visualization , 2004, Commun. Inf. Syst..

[32]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[33]  Wei Zeng,et al.  Ricci Flow for Shape Analysis and Surface Registration: Theories, Algorithms and Applications , 2013 .

[34]  S. Yau,et al.  Numerical Computation of Surface Conformal Mappings , 2012 .

[35]  Lok Ming Lui,et al.  DETECTION OF SHAPE DEFORMITIES USING YAMABE FLOW AND BELTRAMI COEFFICIENTS , 2010 .

[36]  Xianfeng Gu,et al.  Supine to prone colon registration and visualization based on optimal mass transport , 2019, Graph. Model..

[37]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[38]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces II , 2014, Journal of Differential Geometry.

[39]  M. Roček,et al.  Quantum regge calculus , 1981 .

[40]  Na Lei,et al.  Quadrilateral and hexahedral mesh generation based on surface foliation theory II , 2017 .

[41]  Wei Zeng,et al.  Hyperbolic Harmonic Mapping for Surface Registration , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .